
2622 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Improved Linear Convergence of Training CNNs
With Generalizability Guarantees:

A One-Hidden-Layer Case
Shuai Zhang, Graduate Student Member, IEEE, Meng Wang , Member, IEEE,

Jinjun Xiong , Senior Member, IEEE, Sijia Liu , Member, IEEE, and Pin-Yu Chen, Member, IEEE

Abstract— We analyze the learning problem of one-hidden-
layer nonoverlapping convolutional neural networks with the
rectified linear unit (ReLU) activation function from the per-
spective of model estimation. The training outputs are assumed
to be generated by the neural network with the unknown ground-
truth parameters plus some additive noise, and the objective is
to estimate the model parameters by minimizing a nonconvex
squared loss function of the training data. Assuming that the
training set contains a finite number of samples generated from
the Gaussian distribution, we prove that the accelerated gradient
descent (GD) algorithm with a proper initialization converges
to the ground-truth parameters (up to the noise level) with
a linear rate even though the learning problem is nonconvex.
Moreover, the convergence rate is proved to be faster than the
vanilla GD. The initialization can be achieved by the existing
tensor initialization method. In contrast to the existing works
that assume an infinite number of samples, we theoretically
establish the sample complexity of the required number of
training samples. Although the neural network considered here
is not deep, this is the first work to show that accelerated
GD algorithms can find the global optimizer of the nonconvex
learning problem of neural networks. This is also the first
work that characterizes the sample complexity of gradient-based
methods in learning convolutional neural networks with the
nonsmooth ReLU activation function. This work also provides
the tightest bound so far of the estimation error with respect to
the output noise.

Index Terms— Accelerated gradient descent (GD), convolu-
tional neural networks, generalizability, global optimality, linear
convergence.

I. INTRODUCTION

NEURAL networks, especially convolutional neural net-
works (CNNs), have demonstrated superior performance

in machine learning for image classification [16] and recogni-
tion [19], natural language processing [5], and strategic game

Manuscript received August 25, 2019; revised March 25, 2020; accepted
June 28, 2020. Date of publication July 29, 2020; date of current version
June 2, 2021. This work was supported in part by the Air Force Office
of Scientific Research (AFOSR) under Grant FA9550-20-1-0122, in part by
NSF 1932196, and in part by the Rensselaer-IBM AI Research Collaboration,
a part of the IBM AI Horizons Network. (Corresponding author: Meng Wang.)

Shuai Zhang and Meng Wang are with the Department of Electrical,
Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy,
NY 12180 USA (e-mail: zhangs21@rpi.edu; wangm7@rpi.edu).

Jinjun Xiong, Sijia Liu, and Pin-Yu Chen are with the IBM Thomas
J. Watson Research Center, Yorktown Heights, NY 10598 USA (e-mail:
jinjun@us.ibm.com; sijia.liu@ibm.com; pin-yu.chen@ibm.com).

This article has supplementary downloadable material available at
https://ieeexplore.ieee.org, provided by the authors.

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2020.3007399

program [33]. Compared with fully connected neural net-
works, CNNs require fewer coefficients and can better capture
local features [20], and thus, perform well in applications, such
as image and video processing.

Learning a neural network needs to find appropriate para-
meters for the hidden layers using the training data and is
achieved by minimizing a nonconvex empirical loss function
over the choices of the model parameters. The nonconvex
learning problem is usually solved by a first-order gradient
descent (GD) algorithm. The convergence to the global opti-
mal, however, is not guaranteed naturally due to the existence
of spurious local minima. Another major hurdle to the wide-
spread acceptance of deep learning is the lack of analytical
performance guarantees about whether the parameters learned
from the training data perform well on the testing data, i.e.,
the generalizability of the learned model. A learned model
generalizes well to the testing data provided that it is a global
minimizer of the population loss function, which takes the
expectation over the distribution of testing samples. Since
the distribution is unknown, one minimizes the empirical loss
function of the training data assuming that the training data are
drawn from the same distribution. Moreover, a large number
of training samples are required to obtain a network model
with powerful feature representation capability [6], while the
method may perform poorly when the number of training
samples is small [4]. The theoretical characterization of the
required size of the training data for given network architecture
is vastly unavailable.

To analyze the learning performance, one line of research
focuses on the overparameterized case that the number of
parameters in the neural network is larger than the num-
ber of training samples [1], [2], [14], [15], [24], [27],
[30], [34]. In particular, the optimization problem has no
spurious local minima [24], [34], [43], and GD methods
can indeed find the global minimum of the empirical loss
function. Nevertheless, the overparameterized models may
experience overfitting issues in practice [42], [43]. More-
over, when overparameterized, there is no guarantee by
Vapnik–Chervonenkis (VC)-dimension learning theory that the
empirical loss function is close to the population loss, and
thus, the generalizability of the learned model to the testing
data is unknown. Reference [1] develops a new analysis
tool to explore the generalizability under overparameterization
assumption. The convergence rate provided by [1] is sublinear,
and the sizes of neural networks increase as a polynomial
function of the inverse of the desired testing error, which
implies a high computational cost. Moreover, the training
error and the generalization error are analyzed separately, and

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0928-9691
https://orcid.org/0000-0002-2620-4859
https://orcid.org/0000-0003-2817-6991

ZHANG et al.: IMPROVED LINEAR CONVERGENCE OF TRAINING CNNs 2623

it is not clear if both a small training error and a small
generalization error can be achieved simultaneously.

References [18] and [39] study the convergence to the
global optimal for shallow neural networks when the data is
linearly separable. Assuming the rectified linear unit (ReLU)
activation function and the hinge loss function, [39] can
detect all the spurious local minima and saddle points, and
the generalization error of the learned model approaches
zero when the number of samples goes to infinite. However,
if the data are linearly separable, simple algorithms, such as
perceptron [29], can find a classifier in finite steps. Moreover,
the detection method of the spurious local minima and saddle
points in [39] only apply the ReLU activation function and
hinge loss function, and the method does not extend to other
activation functions and loss functions.

One recent line of research assumes the existence of a
ground-truth model that maps the input data to the output
data. Then the set of the ground-truth model parameters is
a global minimizer of both the population and the empirical
risk functions. The learning problem can be viewed as a model
estimation problem. If the parameters are accurately estimated,
the generalizability of the testing data is guaranteed. This
article follows this line of research.

To simplify the analysis, one standard trick in this line
of research is to assume that the number of input data is
infinite so that the empirical loss function is simplified to the
population loss function that is easier to analyze. Most existing
theoretical results are centered on one-hidden-layer shallow
neural networks as the analyses quickly become intractable
when the number of layers increases. The input data are
usually assumed to follow the Gaussian distribution [32] or
some distributions that are rationally invariant [7]. References
[3], [8], and [36] analyze the landscape of the population
loss function of a simple one-hidden-layer neural network
with only one or two nodes and show that there exists a
considerably large convex region near the global optimum.
Then, a random initial point lies in this region with a con-
stant probability, and GD algorithms converge to the global
minimum. This result does not easily generalize to general
neural networks as spurious local minima are fairly common
for neural networks with even one hidden layer but multiple
nodes [31]. Some works [10], [22], [23] seek to obtain a good
optimization landscape through changing the neural network
structure. Reference [22] adds an identity mapping after the
hidden layer to improve the convergence of the GD algorithm.
An additional regularization term is added to the loss function
in [10] such that the ground-truth parameters are still close to
the global minimum, and spurious local minima are excluded.
An exponential node is added in each layer of an arbitrary
neural network such that all local minima are global minima
[23]. Another work [12] developed a new iterative algorithm
named Convotron, which applied a modified gradient descent
update in each iteration and did not require initialization.

In the practical case of a finite number of samples, the
nice properties of the population loss function do not directly
generalize to the empirical loss function. Some recent works
study the training performance with a finite number of samples
[9], [40], [44]–[46]. If the number of samples is greater than
a certain threshold, referred to the sample complexity, [40]
shows that iterates converge to the ground-truth parameters
for one-hidden-layer neural networks. However, the sample
complexity is suboptimal as it is a high order polynomial with
respect to the dimension of the input data. With the tensor

initialization method [46], GD algorithms are proved to
converge to the ground-truth parameters linearly in one-
hidden-layer neural networks, and the sample complexity
is nearly linear in the dimension of the input data [9],
[44]–[46]. However, the analyses in [9], [45], and [46] are
limited to smooth activation functions and exclude the widely
used nonsmooth activation function, ReLU. Among them,
only [44] studies the ReLU activation function but focuses
on fully connected neural networks. Reference [44] can only
guarantee the convergence to the ground truth up to some
nonzero estimation error, even when the data are noiseless.

The majority of the above-mentioned works assume that
data are noiseless, which may not be realistic in practice.
Only [10] and [44] consider the cases that the output data
contain additive noise that is independent of the input. The
noise is assumed to be zero mean by Ge et al. [10], and
they analyze the stochastic GD through expectation. Thus,
the noise does not affect their analyses and results. The
result in [44] guarantees the convergence of GD provided
that the initialization is sufficiently close to the ground-truth
parameters, but no discussion is provided about whether the
initialization in [44] satisfies this assumption or not.

All the aforementioned works analyze standard GD algo-
rithms. It is well known that Accelerated GD (AGD) methods,
such as the Nesterov accelerated gradient (NAG) method [26]
and the heavy ball method [28], converge faster than vanilla
GD. However, the analyses for GD do not generalize directly
to AGD because of the additional momentum term introduced
in AGD. Only [35] and [41] explore the numerical perfor-
mance of AGD in neural networks. No theoretical analysis of
AGD is reported in [35]. Reference [41] analyzes AGD from
a general optimization perspective, and it is not clear whether
the neural network learning problem satisfies the assumptions
in [41].

This article provides novel contributions to the theoretical
analyses of neural networks in three aspects. First, this article
provides the first theoretical analysis of AGD methods in
learning neural networks. We prove analytically that the AGD
method can converge to the ground-truth parameters linearly,
and its convergence rate is faster than vanilla GD. Second,
it is the first work that explicitly proves the convergence of
the proposed learning algorithm to the ground-truth parameters
(or nearby) when the data contain noise. We characterize the
relationship between the learning accuracy and noise level
quantitatively. Our error bound is much tighter than that in
[44], and [44] makes assumptions about the initialization
without any justification. In the special case of noiseless data,
our parameter estimation is exact, while the method in [44] is
not. Third, it provides the first tight generalizability analysis
of the widely used convolutional neural networks with the
nonsmooth ReLU activation functions. Specifically, we prove
that for one-hidden-layer nonoverlapping convolutional neural
networks, if initialized using the tensor method, and the num-
ber of samples exceeds our characterized sample complexity,
both GD and ADG converge to a global minimum linearly
up to the noise level. Our sample complexity is orderwise
optimal with respect to the dimension of the node parameters.
Our estimation error bound of the ground-truth parameters is
much tighter than a direct application of the existing results
for fully connected neural networks, such as [44] to CNN.

The rest of this article is organized as follows. Section II
introduces the problem formulation. The algorithm and major
theorems are presented in Section III. Section IV shows the

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

2624 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Fig. 1. One-hidden-layer nonoverlapping CNN.

simulation results, and Section V concludes this article. All
the proofs are in the Appendix.

Notation: Vectors are bold lowercase, matrices and tensors
are bold uppercase, and scalars are in normal font. For
instance, Z is a matrix, and z is a vector. zi denotes the i th
entry of z, and Zi j denotes the (i, j)th entry of Z. I and ei

denote the identity matrix and the i th standard basis vector.
ZT denotes the transpose of Z, similarly for zT . ‖z‖ denotes
the �2-norm of a vector z, and ‖Z‖2 and ‖Z‖F denote the
spectral norm and Frobenius norm of a matrix Z, respectively.
We use σi (Z) to denote the i th largest singular value of Z.
The outer product of a group of vectors zi ∈ R

ni , 1 ≤ i ≤ l
and l ∈ N

+, is defined as T = z1 ⊗ · · · ⊗ zl ∈ R
n1×···×nl

with Tj1,..., jl = (z1) j1 · · · (zl) jl . Let Li be a linear operator
from R

ni to R
di with 1 ≤ i ≤ l, then T(L1, . . . ,Ll) =

L1(z1)⊗· · ·⊗Ll (zl) ∈ R
d1×···×dl . Moreover, f (d) = O(g(d))

means that if for some constant C > 0, f (d) ≤ Cg(d) holds
when d is sufficiently large. f (d) = �(g(d)) means that for
some constants c > 0 and C > 0, cg(d) ≤ f (d) ≤ Cg(d)
holds when d is sufficiently large. In the Appendix, we use
f (d) � (�)g(d) to denote there exists some positive constant
C such that f (d) ≥ (≤)C · g(d) when d is sufficiently large.

II. PROBLEM FORMULATION

Following [45], we consider the regression setup in this
article as follows. Given N input data xn ∈ R

p, n =
1, 2, . . . , N that are independent and identically distributed
(i.i.d.) from the standard Gaussian distribution N (0, I p×p), the
resulting outputs yn ∈ R, n = 1, 2, . . . , N are generated from
{xn}N

n=1 by a one-hidden-layer nonoverlapping convolutional
neural network shown in Fig. 1. The hidden layer has K
nodes. We use the vector w∗

j ∈ R
d to denote the weight

parameters for the j th node in the hidden layer and define the
weight matrix W∗ = [

w∗
1, w∗

2, . . . , w∗
K

] ∈ R
d×K . Followed

by the hidden layer, there is a pooling layer with ground-truth
parameters v∗ ∈ R

d . We assume K < d throughout this article
because K is the constant, while d increases as the dimension
of the input data increases. σi = σi (W∗) denotes the i th largest
singular value of W ∗. We define κ = σ1(W∗)/σK (W ∗) as the
conditional number of W∗ and γ = �K

j=1(σ j (W∗)/σK (W∗)).
Each input data xn is partitioned into M nonoverlapping

patches, denoted by P i xn ∈ R
d , i = 1, . . . ,M . P i ∈ R

d×p,
i = 1, . . . ,M , are a series of matrices that satisfy the following
properties: (1) there exists one and only one nonzero entry with
value 1 in each row of P i ; (2) 〈P i1 , P i2〉 = 0 for i1
= i2.1

A simple example of {P i }M
i=1 is

P i =
[

0d×d · · · 0d×d︸ ︷︷ ︸
(i − 1)submatrices

Id×d 0d×d · · · 0d×d︸ ︷︷ ︸
(M − i)submatrices

]
.

1Such requirement on P i guarantees the independence of each patches and
will be used in the proofs.

The output yn can be written as

yn = g(xn)+ ξn =
K∑

j=1

M∑
i=1

v∗
jφ

(
w∗

j
T P i xn

)
+ ξn (1)

for 1 ≤ n ≤ N , where ξn is the additive stochastic noise.
Throughout this article, we assume bounded noise with

zero mean and use |ξ | to denote the upper bound such that
|ξn| ≤ |ξ | for all n. In practice, the mapping from the input to
output data may not be modeled exactly by a neural network
due to the random fluctuations or measurement errors in the
data. The additive noise better characterizes the relations in
real data sets.

The activation function φ(z) = max{z, 0} is the ReLU func-
tion, which is widely used in various applications [11], [13],
[21], [25]. Note that if the activation function is homogeneous,
such as ReLU, one can assume v∗

j to be either +1 or −1
without loss of generality. That is because v∗

jφ(w
∗
j
T P i xn) =

sign(v∗
j)φ(|v∗

j |w∗
j
T P i xn) for a homogeneous φ. We can just

let w̃∗
j = |v∗

j |w∗
j and ṽ∗

j = sign(v∗
j) and use {w̃∗

j }K
j=1 and

{̃v∗
j }K

j=1 as ground-truth parameters equivalently. Therefore,
we assume v∗

j ∈ {+1,−1} for any 1 ≤ j ≤ K throughout
this article.

Given any estimated W ∈ R
d×K and v ∈ R

K of the weight
matrix W∗ and v∗, the empirical squared loss function2 of the
training set D = {xn, yn}N

n=1 is defined as

f̂D(W, v) = 1

2N

N∑
n=1

⎛⎝ K∑
j=1

v j

M∑
i=1

φ
(
wT

j P i xn
) − yn

⎞⎠2

. (2)

Our goal is to estimate the ground-truth weight matrix W ∗
and v∗ via solving the following problem:

min
W∈Rd×K ,v∈RK

: f̂D(W, v). (3)

Clearly (W∗, v∗) is a global minimizer to (3) when measure-
ments are noiseless, i.e., ξn = 0 for all n. However, (3) is a
nonconvex optimization problem and is not easy to solve.

III. ALGORITHM AND THEORETICAL RESULTS

We propose to solve the nonconvex problem (3) via the
heavy ball method [28]. The algorithm is initialized via
the tensor method [46]. Although the tensor initialization
is designed for fully connected neural networks in [46],
we can extend it to nonoverlapping convolutional neural
networks with minor changes. v̂ is estimated through the
tensor initialization. During each iteration, we update W
through the AGD algorithm. Compared with the vanilla
GD, in the (t + 1)th iteration, an additional momen-
tum term, denoted by β(W (t) − W (t−1)), is added to
the update, where W (t) is the estimation in iteration t .
The momentum represents the direction of the previous iter-
ations. Hence, besides moving along the GD direction with a
step size of η, W (t) is further moved along the direction of
previous steps with a parameter of β. During each iteration,
a fresh subset of data is applied to estimate the GD. Such
disjoint subsets guarantee the independence of f̂Dt over the
iterations. This is a standard analysis technique [45], [46], and
not necessarily in numerical experiments. The initialization
algorithm is summarized in Section III-A, and Algorithm 1
summarizes our proposed algorithm to solve (3).

2Besides the mean squared error, another choice of the loss function,
especially in classification problems, is the cross entropy, see [9].

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: IMPROVED LINEAR CONVERGENCE OF TRAINING CNNs 2625

Algorithm 1 Accelerated GD Algorithm With Tensor Initial-
ization
1: Input: training data D = {(xn, yn)}N

n=1, gradient step
size η, momentum parameter β, and thresholding error
parameter ε;

2: Initialization: W (0), v̂ through Tensor Initialization via
Subroutine 1;

3: Partition D into T = log(1/ε) disjoint subsets, denoted as
{Di}T

i=1;
4: for t = 1, 2, . . . , T do
5: W (t+1) = W (t) − η∇ f̂Dt (W

(t), v̂)+β(W (t) − W (t−1))
6: end forreturn W (T) and v̂.

A. Initialization via Tensor Method

In this section, we first briefly introduce the tensor initial-
ization method that is built upon [46, Algorithm 1]. We then
provide the first theoretical performance guarantee of the
tensor initialization method when the output contains noise
in Lemma 1, while the result in [46] only applies to noiseless
measurements.

The tensor initialization method in [46] is designed for the
fully connected neural networks. To handle the convolutional
neural networks, the definitions of the high-order moments
[see (5)–(7)] are modified by replacing x in [46, Definition
5.1] with P i x. All the other steps mainly follow [46].

Following [46], we define a special outer product, denoted
by ⊗̃. For any vector v ∈ R

d1 and Z ∈ R
d1×d2

v⊗̃Z =
d2∑

i=1

(v ⊗ zi ⊗ zi + zi ⊗ v ⊗ zi + zi ⊗ zi ⊗ v) (4)

where ⊗ is the outer product and zi is the i th column of Z.
Next, we pick any i ∈ {1, 2, . . . , K } and define

M i,1 = Ex{yx} ∈ R
d (5)

M i,2 = Ex{y[(P i x)⊗ (P i x)− I]} ∈ R
d×d (6)

M i,3 = Ex
{

y
[
(P i x)⊗3 − (P i x)⊗̃I

]} ∈ R
d×d×d (7)

where z⊗3 := z ⊗ z ⊗ z, and Ex is the expectation over x.
From [46, Claim 5.2], there exist some known constants

ψi , i = 1, 2, 3, such that

M i,1 =
K∑

j=1

ψ1 · v∗
j

∥∥w∗
j

∥∥ · w∗
j (8)

M i,2 =
K∑

j=1

ψ2 · v∗
j

∥∥w∗
j

∥∥ · w∗
jw

∗T
j (9)

M i,3 =
K∑

j=1

ψ3 · v∗
j

∥∥w∗
j

∥∥ · w∗⊗3
j (10)

where w∗
j = w∗

j/‖w∗
j‖2 in (5)–(7) is the normalization of w∗

j .
M i,1, M i,2, and M i,3 can be estimated through the sam-

ples {(xn, yn)}N
n=1, and let M̂ i,1, M̂ i,2, and M̂ i,3 denote the

corresponding estimates. First, we will decompose the rank-k
tensor M i,3 and obtain the {w∗

j}K
j=1. By applying the tensor

decomposition method [17] to M̂ i,3, the outputs, denoted by
ŵ

∗
j , are the estimations of {s jw

∗
j }K

j=1, where s j is an unknown
sign. Second, we will estimate s j , v∗

j and ‖w∗
j‖2 through M i,1

and M i,2. Note that M i,2 does not contain the information of
s j because s2

j is always 1. Then, through solving the following

two optimization problem:

α̂1 = arg min
α1∈RK

:
∣∣∣∣∣∣M̂ i,1 −

K∑
j=1

ψ1α1, j ŵ
∗
j

∣∣∣∣∣∣
α̂2 = arg min

α2∈RK
:
∣∣∣∣∣∣M̂ i,2 −

K∑
j=1

ψ2α2, j ŵ
∗
jŵ

∗T
j

∣∣∣∣∣∣. (11)

The estimation of s j can be given as ŝ j = sign(̂α1, j/α̂2, j).
In addition, we know that |̂α1, j | is the estimation of
‖w∗

j‖ and v̂ j = sign(̂α1, j/s j). Thus, W (0) is given as[
sign(̂α2,1)̂α1,1ŵ

∗
1, . . . , sign(̂α2,K)̂α1,K ŵ

∗
K

]
.

To reduce the computational complexity of tensor decompo-
sition, one can project M̂ i,3 to a lower dimensional tensor [46].
The idea is to first estimate the subspace spanned by {w∗

j }K
j=1,

and let V̂ denote the estimated subspace. Then, from (7) and
(10), we know that M i,3(V̂ , V̂ , V̂) ∈ R

K×K×K is represented
by

M i,3
(
V̂ , V̂ , V̂

)
= Ex

{
y

[(
V̂

T
P i x

)⊗3 −
(

V̂
T

P i x
)
⊗̃I

]}
=

K∑
j=1

ψ3

(
V̂

T
w∗

j

)
·
(

V̂
T
w∗

j

)⊗3
(12)

and can be estimated by training samples as well. Next, one
can decompose the estimate M̂ i,3(V̂ , V̂ , V̂) to obtain unit
vectors {̂u j}K

j=1 ∈ R
K . Since w∗ lies in the subspace V ,

we have V V T w∗
j = w∗

j . Then, V̂ û j is an estimate of s jw
∗
j .

The initialization process is summarized in Subroutine 1.

Subroutine 1 Tensor Initialization Method
1: Input: training data D = {(xn, yn)}N

n=1;
2: Partition D into three disjoint subsets D1, D2, D3;
3: Calculate M̂ i,1, M̂ i,2 following (5), (6) using D1, D2,

respectively;
4: Obtain the estimate subspace V̂ of M̂i,2;
5: Calculate M̂ i,3(V̂ , V̂ , V̂) using (12) through D3;
6: Obtain {̂u j }K

j=1 via tensor decomposition method [17];
7: Obtain α̂1, α̂2 by solving optimization problem (11);
8: Return: w

(0)
j = sign(̂α2, j)̂α1, j V̂ û j and v̂ = sign(̂α2), j =

1, . . . , K .

B. Parameter Estimation Through Accelerated Gradient
Descent

In this part, we provide the major theoretical results.
Lemma 1 provides the first error bound of the initialization
using the tensor initialization method in the presence of
noise. Based on the tensor initialization method, Theorem 1
summarizes the recovery accuracy of W∗ using Algorithm 1.

Lemma 1: Assume the noise level |ξ | ≤ K Mσ1 and the
number of samples N ≥ C1κ

8 M2 K d log4 d for some large
positive constant C1, the tensor initialization method in Sub-
routine 1 outputs v̂, W (0) such that

v̂ = v∗ (13)

and

‖W (0) − W∗‖2 ≤ C2κ
6

√
K 4d log d

N
(K Mσ1 + |ξ |) (14)

with probability at least 1 − d−10.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

2626 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Theorem 1: Let {W (t)}T
t=1 be the sequence generated in

Algorithm 1 with η = (1/(12M2 K)). Suppose the noise level
|ξ | ≤ K Mσ1 and the number of samples satisfies

N ≥ C3ε
−2
0 κ9γ 3 M3 K 8d log4 d log(1/ε) (15)

for some constants C3 > 0 and ε0 ∈ (0, (1/2)). Then,
{W (t)}T

t=1 converges linearly to W∗ with probability at least
1 − K 2 M2T · d−10 as∥∥W (t) − W∗∥∥

2 ≤ ν(β)t
∥∥W (0) − W∗∥∥

2

+ C4

√
κ2γM K 2d log d

N
· |ξ | (16)

and∥∥W (T) − W∗∥∥
2 ≤ ε

∥∥W∗∥∥
2 + C4

√
κ2γM K 2d log d

N
· |ξ |

(17)

where ν(β) is the convergence rate that depends on β, and C4
is some positive constant. Moreover, we have

ν(β) < ν(0) for some small nonzero β. (18)

Specifically, let β∗ = (1 − (((1 − ε0)/(132κ2γ K M)))1/2)2,
we have

1 − 1 − ε0

132κ2γ K M
≤ ν(0) ≤ 1 − 1 − 2ε0

132κ2γ K M

ν
(
β∗) ≤ 1 − 1 − ε0√

132κ2γ K M
. (19)

Remark 1 (Zero Generalization Error of Learned Model):
Lemma 1 shows that the weight vector v∗ of the second
layer can be exactly recovered when the noise is bounded,
and there exist enough samples. Theorem 1 shows that the
iterates returned by Algorithm 1 converge to W ∗ exactly in
the noiseless case or approximately in noisy case. For the
convenience of presentation, we refer to the second term
on the right-hand side of (16) and (17) as the noise error
term. Specifically, when the relation of input x and the
output y can be exactly described by the CNN model, i.e.,
the noise ξ = 0, then the noise error term vanishes, and
the ground-truth W∗ can be estimated exactly with a finite
number of samples. When the noise is not zero, the noise
error term decreases as the number of samples N increases in
the order of (1/N)1/2. With a sufficiently large sample size,
iterates can approach W∗ for an arbitrarily small error. With
the number of samples satisfies (15), the second error term
on the right-hand side of (16) is proportional to the noise
magnitude |ξ |. From the definition of g(·), one can check that
κK Mσ1 ≤ Ex |g(x)| ≤ K Mσ1 when x follows N (0, 1). Then,
the condition in Lemma 1 and Theorem 1 that |ξ | ≤ K Mσ1
means that the noise can be as high as the order of the average
energy of the noiseless output g(x).

Remark 2 (Faster Linear Convergence Rate Than GD
in Learning Neural Networks): Theorem 1 indicates that
the heavy ball step can accelerate the rate of convergence,
as shown in (18). Without the second momentum term, i.e.,
β = 0, the rate of convergence is 1 − �(1/(K M)) for the
vanilla GD. If β is selected appropriately, the rate of conver-
gence is improved and upper bounded by 1 −�(1/(K M)1/2).
This is the first article to provide theoretical guarantees for the
convergence of AGD methods in learning neural networks.

Remark 3 (Sample Complexity Analysis): Theorem 1
requires O(M3 K 8d log4 d log(1/ε)) number of samples for the
successful estimation. K is the number of nodes in the hidden
layer and, usually, a fixed constant for a given neural network.
d is the dimension of patches and scales with the size of input
data. ε is the estimation error of W∗. Note that the degree of
freedom of W∗ is K d . The required number of samples in
Theorem 1 depends on d log4 d and thus is nearly optimal
with respect to d .

C. Comparisons With Related Works

We compare our results with all the exiting works to the
best of our knowledge that provide generalizability guarantees.
We focus on the following three aspects.

1) Tensor Initialization Method and AGD Algorithm: Ten-
sor initialization method is first introduced and analyzed in
[46] for fully connected neural networks with homogeneous
activation functions. Reference [9] extends the analysis to the
nonhomogeneous sigmoid activation. However, both works
only consider noiseless settings. When reduced to the case
of fully connected neural networks without noise, i.e., ξ = 0
and M = 1, the bound in (14) is as tight as that in [46].

Existing works only consider the convergence of GD instead
of AGD in neural networks. Due to the additional momentum
term, the analysis of GD does not directly generalize to AGD.
Specifically, the convergence of GD is based on establishing
‖W (t+1) − W∗‖2 ≤ ν‖W (t) − W∗‖2 for some |ν| < 1,
and therefore, this analysis does not directly apply to AGD.
Instead, our analysis of AGD is based on the augmented
iteration as

[
W (t+1)−W∗
W (t)−W∗

]
, and the convergence rate is calculated

as a function of β. Note our analysis also applies to the special
case that β = 0, i.e., the GD algorithm.

2) Noisy Outputs: References [10] and [44] consider noisy
outputs are fully connected neural networks. Ge et al. [10]
analyze stochastic GD through expectation, and the noise is
assumed to be zero mean. Thus, the noise level does not
appear in the theoretical bounds. Zhang et al. [44] assume the
existence of a proper initialization, but there is no theoretical
guarantee in [44] about whether their proposed initialization
method in the noisy setting can return a desirable initialization.
Moreover, our error bound (16) is tighter than that in [44].
Specifically, the second term on the right-hand side of (16)
only depends on the noise factor ξ . In contrast, [44, eq.
(4.1)] shows that the GD algorithm converges to W∗ up to an
estimation error that depends on both ‖W∗‖F and the noise
level. Even when there is no noise, the additional error term
in [44, eq. (4.1)] is nonzero.

3) Theoretical Guarantees: As most existing works only
focus on the GD algorithm with noiseless outputs, we compare
with these works by reducing to β = 0 and ξ = 0 in
Theorem 1. References [3], [8], [9], and [45] consider one-
hidden-layer nonoverlapping convolutional neural networks.
References [3] and [8] show that the GD algorithm converges
to the ground truth with a constant probability from one
random initialization, but the result only applies to the case
of one node in the hidden layer, i.e., K = 1. Moreover,
the analyses assume an infinite number of input samples
and do not consider the sample complexity. Based on the
tensor initialization method [46], [9], and [45] show that
the GD algorithm converges to the ground truth with a
linear convergence rate, but the result only applies to smooth
activation functions, such as sigmoid functions and excludes

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: IMPROVED LINEAR CONVERGENCE OF TRAINING CNNs 2627

Fig. 2. Recovery error of AGD under different v∗.

Fig. 3. Success rate of AGD under different v∗.

ReLU functions. References [10] and [44] provide the sample
complexity analysis with the ReLU activation function but
focus on one-hidden-layer fully connected neural networks,
which can be viewed as a special case of the convolutional
neural network studied in this article by selecting M = 1.
The sample complexity in [10] with respect to d is poly(d),
but the power of d is not provided explicitly. Moreover, the
convergence rate in [10] is sublinear, while our theorem shows
that both GD and AGD enjoy linear convergence rates.

IV. SIMULATION

The input data {xn}N
n=1 are randomly selected from the

Gaussian distribution N (0, I). The number of patches M
is selected as a factor of the signal dimension p, and all
the patches have the same size d with d = p/M . Entries
of the weight matrix W∗ are i.i.d generated from N (0, 12).
The noise {ξn}N

n=1 are i.i.d from N (0, σ 2), and the noise
level is measured by σ/Ey, where Ey is the average energy
of the noiseless outputs {g(xn)}N

n=1 calculated as Ey =
((1/N)

∑N
n=1 |g(xn)|2)1/2. The output data {yn}N

n=1 are gen-
erated by (1). In the following numerical experiments, the
whole data set {xn, yn}N

n=1 instead of a fresh subset is used
to calculate the gradient in each iteration. The initialization
is randomly selected from {W0

∣∣‖W 0 − W∗‖F/‖W∗‖F < 0.5}
and v(0) = v∗ to reduce the computation. As shown in [9] and
[44], random initialization and the tensor method have very
similar numerical performance.

If not otherwise specified, we use the following parameter
setup. p is chosen as 50, and M is selected as 5. Hence,
d = p/M is 10. The number of nodes in hidden layer K is
chosen as 5. The number of samples N is chosen as 200. The
step size of the gradient η is ((2K)/M2), and β is selected as
(1 − (1/(K M)1/2))2. All the simulations are implemented in
MATLAB 2015a on a desktop with 3.4-GHz Intel Core i7.

A. Performance of AGD With Different v∗

Figs. 2 and 3 show the performance of AGD with different
v∗

j , and the results are averaged over 100 independent trials. In
Fig. 2, the relative error is defined as ‖W (t) − W∗‖F/‖W ∗‖F ,

Fig. 4. Convergence of AGD with different K .

Fig. 5. Convergence of AGD with different M.

Fig. 6. Phrase transition of N against d.

where W (t) is the estimate in the t th iteration. In Fig. 3, each
trial is called a success if the relative error is less than 10−6.
We generate two cases of v∗. In Case 1, all the entries of
v∗ are 1, while each entry is i.i.d. selected from {+1,−1}
with equal probability in Case 2. k is set as 5, and d is set
as 60 with p = 300. In Figs. 2 and 3, the results of Case 1
is shown by the lines marked as “v j = +1,” and the second
group is marked as “v j ∈ {+1,−1}.” We can see that the
performances of these two cases are almost the same. In the
following experiments, we fix v∗

j as 1 for all j .

B. Performance of AGD With Noiseless Output

Figs. 4 and 5 show the convergence of AGD by varying K
and M . In Fig. 4, η and β are calculated based the value of
K , and other parameters are fixed. For each K , we conducted
independent trials with random selected xn , W∗ and the
corresponding yn. Given K , the convergence rates of different
trials vary slightly. Fig. 4 shows one example of these trials
for each K . We can see that the convergence rate decreases
as K increases. Similarly, Fig. 5 shows that the convergence
rate decreases as M increases.

Figs. 6 and 7 show the phase transition, where the number
of samples N , the dimension of patches d , and the number of
nodes in the hidden layer K change. All the other parameters
except N and d (or k) remain the same as the default values.
For each (N, d) or (N, K) pair, we conduct 100 independent
trials. Each trial is called a success if the relative error is less
than 10−6. A white block means all the trails are successful,
while a black one means all the trials fail.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

2628 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Fig. 7. Phrase transition of N against K .

Fig. 8. Performance of Algorithm 1 with noisy measurements.

Fig. 9. Phrase transition of AGD in noisy settings.

Fig. 10. Performance of AGD and GD under different η.

C. Performance of AGD With Noisy Output
Fig. 8 shows the relative error of the AGD algorithm by

varying the number of samples N in the noisy case. K is set
as 5, and d is set as 60 with p = 300. Hence, the degree of
freedom of W∗ is 300. The y-axis stands for the relative error,
and the results are averaging over 100 independent trials. We
can see that the relative errors are high when N is less than the
degree of freedom at 300. Once the number of samples exceeds
the degree of freedom, the relative error decreases dramatically
in both noisy and noiseless settings. As N increases, the
relative error in the noisy setting converges fast to the noise
level.

Fig. 9 shows the phrase transition of N against d with
different noise levels. A trial is considered successful if the
returned W satisfies ‖W − W∗‖2/‖W ∗‖2 ≤ σ/Ey (or 10−6

in noiseless settings). As d increases, the required number
of samples for all successful estimations increases as well. In
addition, with a higher noise level, the success region becomes
smaller.

D. Comparison of GD and AGD
Fig. 10 shows the progress of both the GD and AGD meth-

ods across iterations. We fix the same initialization for GD and

Fig. 11. Comparison of AGD and GD in number of iterations.

Fig. 12. Phase transition of GD and AGD.

AGD in Fig. 10(a) and (b), respectively. In both cases, β and
other parameters except for η are fixed as the default values.
The only difference is that the step size η is ((2K)/(M2)) in
Fig. 10(a) and ((3K)/(M2)) in Fig. 10(b). One can see that
starting from the same initialization, GD sometimes diverges
in (b) with a large step size. By adding the heavy-ball term, the
AGD method can converge to the global minimum. Moreover,
when both GD and AGD converge, AGD converges faster
than GD.

Fig. 11 compares the convergence rates of AGD and GD.
The number of samples N is set as 500, and other parameters
are the default values. Each point means the smallest number
of iterations needed to reach the corresponding estimation
error, and the results are averaged over 100 independent trials.
AGD requires a smaller number of the iterations than GD to
achieve the same relative error.

Fig. 12 shows the phrase transition of GD and AGD by
varying N and d when the output is noiseless. AGD has a
larger successful region than GD, so that AGD requires a
smaller number of samples to guarantee successful recovery
for a given d .

V. CONCLUSION

We have analyzed the performance of (accelerated) GD
methods in learning one-hidden-layer nonoverlapping convolu-
tional neural networks with multiple nodes and the ReLU acti-
vation function. We have shown that if the number of samples
exceeds our provided sample complexity, GD methods with
the tensor initialization find the ground-truth parameters with
a linear convergence rate. The parameters can be estimated
exactly when the data are noiseless. Moreover, accelerated
GD is proved to converge faster than vanilla GD. One future
direction is to extend the analysis framework to multilayer
overlapping convolutional neural networks.

APPENDIX

A. Proof of Theorem 1
We first summarize the high-level ideas in proving Theo-

rem 1 before presenting the technical proof. Following the
recent line of research, such as [45] and [46], the idea is
to initialize the weights W near the ground-truth W∗ and
then gradually converge to it. Our initialization is similar

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: IMPROVED LINEAR CONVERGENCE OF TRAINING CNNs 2629

to [46], as discussed in Section III-A. However, our proof
is more involved than that of [46] to handle the additional
noise item, the nonsmooth ReLU functions, the additional
momentum term in accelerated gradient descent, and different
neural network structures.

As for the convergence analysis, [45] and [46] apply the
intermediate value theorem over ∇ f̂Dt at each iterate W t as

∇ f̂Dt (W
(t)) � 〈∇2 f̂Dt

(
Ŵ

(t))
,W (t) − W∗〉

for some Ŵ
(t)

between W (t) and W∗ and analyze ∇2 f̂Dt to
obtain a recursive inequality of W (t)−W∗ over t . The interme-
diate value theorem only applies to the continuous functions,
and their analyses do not extend to our setup because with the
ReLU activation function, the resulting ∇ f̂D is noncontinuous.
Instead, we will first prove that the population loss function
f , which is defined as

f (W) := EDt f̂Dt (W)

= Ex

⎛⎝ 1

K

K∑
j=1

M∑
i=1

φ
(
wT

j P i x
) − y

⎞⎠2

(20)

is locally convex near W∗, and the gradient of f̂Dt is close
enough to ∇ f . We will then show that the iterates based on
∇ f̂Dt converge to W∗.

The following two lemmas are important for our proof.
We leave their proofs to Appendices C and D.

Lemma 2: For any W that satisfies

‖W − W∗‖2 ≤ ε0σK

44κ2γM
, (21)

we have
(1 − ε0)M

11κ2γ
I ≤ ∇2 f (W) ≤ 6M2 K I . (22)

Lemma 3: Suppose a fixed point W satisfies (21). Then, for
a training set D with N > d log d samples, we have

‖∇ f (W)− ∇ f̂D(W)‖2

� M K

√
d log d

N

(
M K‖W − W ∗‖2 + |ξ |) (23)

with probability at least 1 − K 2 M2 · d−10.
Lemma 2 shows that the population loss function f (W)

is locally convex near W∗. Then, the analysis of the AGD
algorithm over the empirical loss function f̂D(W) is based on
the analysis over f (W) and the error bound between ∇ f̂D(W)
and ∇ f (W) as shown in (26).

Lemma 3 describes the error bound between ∇ f (W) and
∇ f̂D(W), and (23) shows that ∇ f̂D(W) converges to ∇ f (W)
in a small neighborhood of W∗ when N is large enough. A
similar result is stated in [44, Lemma 5.3] for fully connected
neural networks with the ReLU activation function. Fully
connected neural networks can be viewed as a special kind of
convolutional neural networks with M = 1. Moreover, even
when reducing our model to the case M = 1, the error bound
presented in (23) is much tighter than that in [44, Lemma 5.3].

Combining Lemmas 1–3, we will show the convergence of
GD in solving (3) by mathematical induction. Conditioned on
the assumption that W (t) satisfies (21), we show that ‖W (t+1)−
W∗‖2 is related to ‖W (t) − W∗‖2 by (38). The acceleration
of heavy-ball steps is analyzed through (32), and the result is
summarized in (33). The next step is to show (38) holds for

all 0 ≤ t ≤ T −1. By Lemma 1, we can choose N to be large
enough so that W (0) satisfies (21). Then, in the induction step,
with a large enough N and a bounded ξ , we will show that
‖W (t+1) − W∗‖2 < ‖W (t) − W∗‖2. Then W (t) satisfies (21)
naturally. The details are as follows.

Proof of Theorem 1: The update rule of W (t) is

W (t+1) = W (t) − η∇ f̂Dt

(
W (t)

) + β
(
W (t) − W (t−1))

= W (t) − η∇ f
(
W (t)

) + β
(
W (t) − W (t−1))

+ η(∇ f
(
W (t)

) − ∇ f̂Dt

(
W (t)

))
. (24)

Since ∇2 f is a smooth function, by the intermediate value
theorem, we have

W (t+1) = W (t) − η∇2 f
(
Ŵ

(t))(
W (t) − W∗)

+ β(W (t) − W (t−1))
+ η(∇ f

(
W (t)

) − ∇ f̂Dt

(
W (t)

))
(25)

where Ŵ
(t)

lies in the convex hull of W (t) and W∗.
Next, we have[

W (t+1) − W∗
W (t) − W∗

]
=

[
I − η∇2 f

(
Ŵ

(t)) + β I β I
I 0

][
W (t) − W∗

W (t−1) − W∗

]
+ η

[∇ f
(
W (t)

) − ∇ f̂Dt

(
W (t)

)
0

]
. (26)

Let A(β) =
[

I − η∇2 f (Ŵ
(t)
)+ β I β I

I 0

]
, and therefore,

we have∥∥∥∥[W (t+1) − W∗
W (t) − W∗

]∥∥∥∥
2

= ‖A(β)‖2

∥∥∥∥[W (t) − W∗
W (t−1) − W ∗

]∥∥∥∥
2

+ η
∥∥∥∥[∇ f

(
W (t)

)−∇ f̂Dt

(
W (t)

)
0

]∥∥∥∥
2

.

From Lemma 3, we know that

η
∥∥∇ f

(
W (t)

) − ∇ f̂Dt

(
W (t)

)∥∥
2

≤ C5ηM2

√
d log d

Nt

(∥∥W − W∗∥∥
2 + |ξ |

M

)
(27)

for some constant C5 > 0. Then, we have∥∥W (t+1) − W∗∥∥
2

≤
(

‖A(β)‖2 + C5ηM2

√
d log d

Nt

)∥∥W (t) − W∗∥∥
2

+ C5ηM

√
d log d

Nt
|ξ |

:= ν(β)
∥∥W (t) − W∗∥∥

2 + C5ηM

√
d log d

Nt
|ξ |. (28)

Let ∇2 f (Ŵ
(t)
) = S�ST be the eigendecomposition of

∇2 f (Ŵ
(t)
). Then, we define

Ã(β) :=
[

ST 0
0 ST

]
A(β)

[
S 0
0 S

]
=

[
I − η�+ β I β I

I 0

]
. (29)

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

2630 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Since
[

S 0
0 S

][
ST 0
0 ST

]
= [

I 0
0 I

]
, we know A(β) and Ã(β) share the

same eigenvalues. Let λi be the i th eigenvalue of ∇2 f (Ŵ
(t)
),

then the corresponding i th eigenvalue of A(β), denoted by
δi(β), satisfies

δ2
i − (1 − ηλi + β)δi + β = 0. (30)

Then, we have

δi (β) = (1 − ηλi + β)+
√
(1 − ηλi + β)2 − 4β

2
(31)

and

|δi(β)|

=

⎧⎪⎨⎪⎩
√
β, if β ≥

(
1 − √

ηλi

)2

1

2

∣∣∣(1−ηλi +β)+
√
(1−ηλi + β)2 − 4β

∣∣∣, otherwise.

(32)

Note that the other root of (30) is abandoned because the root
in (31) is always no less than the other root with |1−ηλi | < 1.
By simple calculations, we have

δi(0) > δi(β), for ∀β ∈ (
0, (1 − ηλi)

2). (33)

Moreover, δi achieves the minimum δ∗
i = |1 − (ηλi)

1/2| when
β = (1 − (ηλi)

1/2)2.
Let us first assume W (t) satisfies (21), then from Lemma 2,

we know that

0 <
(1 − ε0)M

11κ2γ
≤ λi ≤ 6M2 K .

Let γ1 = (((1 − ε0)M)/(11κ2γ)) and γ2 = 6K M2. If we
choose β such that

β∗ = max
{(

1 − √
ηγ1

)2
,
(
1 − √

ηγ2
)2
}

(34)

then we have β ≥ (1 − (ηλi)
1/2)2 and δi = max{|1 −

(ηγ1)
1/2|, |1 − (ηγ2)

1/2|} for any i .
Let η = (1/(2γ2)), then β∗ equals to (1 − (γ1/(2γ2))

1/2)2.
Then, for any ε0 ∈ (0, 1/2), we have∥∥A

(
β∗)∥∥

2 = max
i
δi
(
β∗) = 1 −

√
γ1

2γ2

= 1 −
√

1 − ε0

132κ2γ K M

≤ 1 − 1 − (3/4) · ε0√
132κ2γ K M

. (35)

Then, let

C5ηM2

√
d log d

Nt
≤ ε0

4
√

132κ2γ K M
(36)

we need Nt � ε−2
0 κ2γM K 3d log d . Combining (35) and (36),

we have

ν
(
β∗) ≤ 1 − 1 − ε0√

132κ2γ K M
. (37)

Let β = 0, we have

ν(0) ≥ ‖A(0)‖2 = 1 − 1 − ε0

132κ2γ K M

ν(0) ≤ ‖A(0)‖2 + C5ηM2

√
d log d

Nt
≤ 1 − 1 − 2ε0

132κ2γ K M

if Nt � ε−2
0 κ2γM2 K 4d log d .

Hence, with η = (1/(2γ2)) and β = (1 − (γ1/(2γ2)))
2,

we have∥∥W (t+1)−W∗∥∥
2 ≤

(
1− 1 − ε0√

132κ2γ K M

)∥∥W (t)−W∗∥∥
2

+ 2CηM

√
d log d

Nt
|ξ | (38)

provided that W (t) satisfies (21), and

Nt � ε−2
0 κ2γM K 3d log d. (39)

Then, we can start mathematical induction of (38) over t .
Base Case: According to Lemma 1, we know that (21) holds

for W (0) if

N � ε−2
0 κ9γ 2 K 8 M2d log4 d. (40)

According to (15) in Theorem 1, it is clear that the number
of samples N satisfies (40), then (21) indeed holds for t = 0.
Since (21) holds for t = 0 and N in (15) satisfies (39) as well,
we have (38) holds for t = 0.

Induction Step: Assuming (38) holds for W (t), we need to
show that (38) holds for W (t+1). In other words, we need: 1)
N satisfies (39) and 2) (21) holds for W (t+1). The requirement
1) holds naturally from (15). To guarantee 2) holds, we need

ηM

√
d log d

Nt
� 1 − ε0√

132κ2γ K M
· ε0σK

44κ2γ K 2 M
. (41)

That requires
Nt � ε−2

0 κ8γ 3 M3 K 6d log d. (42)

Therefore, when Nt � ε−2
0 κ9γ 3 M3 K 8d log4 d , we know that

(38) holds for all 0 ≤ t ≤ T − 1 with probability at least
1 − K 2 M2T · d−10. By simple calculations, we can obtain

∥∥W (T) − W∗∥∥
2 ≤

(
1− 1 − ε0√

132κ2γ K M

)T∥∥W (0) − W ∗∥∥
2

+ C4

√
κ2γM K 2d log d

Nt
· |ξ | (43)

for some constant C4 > 0.

B. Proof of Lemma 1

The proof of Lemma 1 is divided into three major parts to
bound I1, I2, and I3 in (50). Lemmas 4, 5, and 6 provide the
error bounds for I1, I2, and I3, respectively. Compared with
the proof of [46, Th. 5.6], which considers noiseless measure-
ments, we need to handle additional items corresponding with
noise, and the error bounds for these items are obtained by
applying matrix concentration inequalities shown in Lemma 7.
The detailed proofs of Lemmas 4–6 can be found in the
Supplementary Materials.

Lemma 4: Suppose M i,2 is defined as in (6) and M̂ i,2 is the
estimation of M i,2 by samples D = {xn, yn}N

n=1. Then, with
probability 1 − d−10, we have∥∥M̂ i,2 − M i,2

∥∥ �
√

d log d

N
(K Mσ1 + |ξ |) (44)

provided that N � d log4 d .
Lemma 5: Let V̂ be generated by step 4 in Subrou-

tine 1. Suppose M i,3(V̂ , V̂ , V̂) is defined as in (12) and

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: IMPROVED LINEAR CONVERGENCE OF TRAINING CNNs 2631

M̂ i,3(V̂ , V̂ , V̂) is the estimation of M i,3(V̂ , V̂ , V̂) by samples
D = {xn, yn}N

n=1. Furthermore, we assume V ∈ R
d×K is an

orthogonal basis of W ∗ and satisfies ‖V V T − V̂ V̂
T ‖ ≤ 1/4.

Then, provided that N � K 5 log6 d , with probability at least
1 − d−10, we have∥∥M̂ i,3

(
V̂ , V̂ , V̂

) − M i,3
(
V̂ , V̂ , V̂

)∥∥
� (K Mσ1 + |ξ |)

√
K 3 log d

N
. (45)

Lemma 6: Suppose M i,1 is defined as in (5) and M̂ i,1 is the
estimation of M i,1 by samples D = {xn, yn}N

n=1. Then, with
probability 1 − d−10, we have∥∥M̂ i,1 − M i,1

∥∥ � (K Mσ1 + |ξ |)
√

d log d

N
(46)

provided that N � d log4 d .
Lemma 7 [37, Th. 1.6]: Consider a finite sequence {Zk} of

independent, random matrices with dimensions d1 × d2.
Assume that such random matrix satisfies

E(Zk) = 0 and ‖Zk‖ ≤ R almost surely.

Define

δ2 := max

{∥∥∥∥∥∑
k

E
(
Zk Z∗

k

)∥∥∥∥∥,
∥∥∥∥∥∑

k

E
(
Z∗

k Zk
)∥∥∥∥∥

}
.

Then, for all t ≥ 0, we have

Prob

{∥∥∥∥∥∑
k

Zk

∥∥∥∥∥ ≥ t

}
≤ (d1 + d2) exp

(−t2/2

δ2 + Rt/3

)
.

Lemma 8 [46, Lemma E.6]: Let V ∈ R
d×K be an orthogo-

nal basis of W∗ and V̂ be generated by step 4 in Subroutine 1.
Assume ‖M̂ i,2−M i,2‖2 ≤ σK (M i,2)/10. Then, for some small
ε0, we have∥∥V V T − V̂ V̂

T ∥∥
2 ≤

∥∥M i,2 − M̂ i,2

∥∥
σK

(
M i,2

) . (47)

Lemma 9 [46, Lemmas E.13 and E.14]: Let V ∈ R
d×K be

an orthogonal basis of W ∗ and V̂ be generated by step 4
in Subroutine 1. Assume M i,1 can be written in the form of
(8) with some constant φ1, and let M̂ i,1 be the estimation
of M i,1 by samples D = {xn, yn}N

n=1. Let α̂1 and α̂2 be the
optimal solutions of (11) with ŵ j = V̂ û j . Then, for each
j ∈ {1, 2, . . . , K }, if

T1 := ∥∥V V T − V̂ V̂
T∥∥

2 ≤ 1

κ2
√

K

T2 := ∥∥û j − s j V̂
T
w j

∥∥
2 ≤ 1

κ2
√

K

T3 := ∥∥M̂ i,1 − M i,1

∥∥
2 ≤ 1

4
‖M i,1‖2 (48)

then we have∣∣α∗
1, j − α̂1, j

∣∣ ≤
(
κ4 K

3
2 (T1 + T2)+ κ2 K

1
2 T3

)∣∣α∗
1, j

∣∣∣∣α∗
2, j − α̂2, j

∣∣ ≤ (
κ8 K 3T2 + κ2 K 2T3

)∣∣α∗
2, j

∣∣ (49)

where α∗
1, j = s jv

∗
j ‖w∗

j‖2 and α∗
2, j = v∗

j ‖w∗
j‖2.

Proof of Lemma 1: we have∥∥w∗
j − s j

∣∣̂α1, j

∣∣V̂ û j

∥∥
2

≤ ∥∥w∗
j − s j

∥∥w j

∥∥2V̂ û j + s j

∥∥w j

∥∥
2V̂ û j − s j

∣∣̂α1, j

∣∣V̂ û j

∥∥
2

≤ ∥∥w∗
j − s j

∥∥w j

∥∥
2V̂ û j

∥∥
2 + ∥∥∥∥w j

∥∥
2V̂ û j − ∣∣̂α1, j

∣∣V̂ û j

∥∥
2

≤ ∥∥w∗
j

∥∥
2

∥∥w∗
j − s j V̂ û j

∥∥
2
+ ∣∣∥∥w j

∥∥
2 − ∣∣̂α1, j

∣∣∣∣∥∥V̂ û j

∥∥
2

≤ σ1

(∥∥∥w∗
j − V̂ V̂

T
w∗

j

∥∥∥
2
+

∥∥∥V̂
T
w∗

j − s j û j

∥∥∥
2

)
+ ∣∣∥∥w j

∥∥
2 − ∣∣̂α1, j

∣∣∣∣
:= σ1(I1 + I2)+ I3. (50)

From Lemma 8, we have

I1 =
∥∥∥w∗

j − V̂ V̂
T
w∗

j

∥∥∥
2

≤
∥∥∥V V T − V̂ V̂

T
∥∥∥

2

≤
∥∥M̂ i,2 − M i,2

∥∥
2

σK
(
M i,2

) (51)

where the last inequality comes from Lemma 4. Then, from
(9), we know that

σK
(
M i,2

)
� min

1≤ j≤K
‖w j‖2 � σK . (52)

From [17, Th. 3], we have

I2 =
∥∥∥V̂

T
w∗

j − s j û j

∥∥∥
2

� κ

σK

∥∥M̂ i,3
(
V̂ , V̂ , V̂

) − M i,3
(
V̂ , V̂ , V̂

)∥∥
2. (53)

To guarantee the condition (48) in Lemma 9 hold, according
to Lemmas 4 and 5, we need N � κ3 M2 K d log d . Then, from
Lemma 9, we have

I3 = (
κ4K 3/2(I1 + I2)+ κ2 K 1/2

∥∥M̂ i,1 − M i,1

∥∥)σ1. (54)

Since d � K , according to Lemmas 4–6, we have∥∥w∗
j − |̂α1, j |V̂ û j

∥∥
2 � ε0κ

6

√
K 3d log d

N
(Mσ1 + |ξ |) (55)

provided that N � d log4 d .
When N � ε−2

0 κ8 K 4 Md log d for ε0 ∈ (0, 1), we have∣∣̂α1, j − α∗
1, j

∣∣ < ε0

∣∣α∗
1, j

∣∣, and
∣∣̂α2, j − α∗

2, j

∣∣ < ε0

∣∣α∗
2, j

∣∣. (56)

Hence, α̂1, j and α̂2, j share the same signs of α∗
1, j and α∗

2, j ,
and v̂ j = v∗

j .

C. Proof of Lemma 2

In this section, we provide the proof of Lemma 2, which
shows the local convexity of f in a small neighborhood of
W∗. The roadmap is to first bound the smallest eigenvalue of
∇2 f in the ground truth as shown in (59), then show that the
difference of ∇2 f between any fixed point W in this region
and the ground truth W ∗ is bounded in terms of ‖W − W ∗‖2
by Lemma 10 the proof of which is in the Supplementary
Materials.

Lemma 10: Suppose W satisfies (21), with any 1 ≤ j ≤ K
and 1 ≤ i ≤ M , we have

Ex

∣∣∣φ′(wT
j P i x

)−φ′
(
w∗

j
T P i x

)∣∣∣ ≤ 2

π

∥∥w∗
j − w j

∥∥∥∥w∗
j

∥∥ (57)

∥∥∇2 f
(
W∗) − ∇2 f (W)

∥∥≤ 4M2 K 2

∥∥W∗−W
∥∥

2

σK
. (58)

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

2632 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Proof of Lemma 2: By the triangle inequality, we have∣∣∥∥∇2 f (W)
∥∥

2 − ∥∥∇2 f
(
W∗)∥∥

2

∣∣ ≤ ∥∥∇2 f
(
W∗) − ∇2 f (W)

∥∥
2

and∥∥∇2 f (W)
∥∥

2 ≤ ∥∥∇2 f
(
W∗)∥∥

2 + ∥∥∇2 f
(
W∗) − ∇2 f (W)

∥∥
2∥∥∇2 f (W)

∥∥
2 ≥ ∥∥∇2 f

(
W∗)∥∥

2 − ∥∥∇2 f
(
W∗) − ∇2 f (W)

∥∥
2.

The error bound of ‖∇2 f (W∗) − ∇2 f (W)‖2 can be derived
from Lemma 10, and the remaining part is to bound ∇2 f (W∗).
The second-order derivative of f at W is written as

∂2 f (W)

∂w j1∂w j2

=Ex

⎡⎣v∗
i v

∗
j

(
M∑

i=1

φ′(wT
j1 P i x

)
P i x

)(
M∑

i=1

φ′(wT
j2 P i x

)
P i x

)T
⎤⎦.

Then, denote P i x by xi . For any vector a ∈ R
K M , the lower

bound of ∇2 f (W∗) is derived from

aT ∇2 f
(
W∗)a

= Ex

⎛⎝ K∑
j=1

M∑
i=1

v∗
j aT

j xiφ
′
(
w∗

j
T xi

)⎞⎠2

:= Ex

(
M∑

i=1

h(xi)

)2

=
M∑

i=1

Exh2(xi)+ 1

K 2

∑
i1
=i2

Exh
(
xi1

)
h
(
xi2

)
=

M∑
i=1

Exh2(xi)+
∑
i1
=i2

Exi1
h
(
xi1

)
Exi2

h
(
xi2

)
(a)≥

M∑
i=1

Exh2(xi) ≥ M

11κ2γ
‖a‖2

2, (59)

where (a) holds since xi1 and xi2 share the same distribution,
and the last inequality comes from [46, Lemma D.6].

Next, the upper bound of ∇2 f (W∗) is derived from

aT ∇2 f
(
W∗)a

= Ex

⎛⎝ K∑
j=1

M∑
i=1

v∗
j aT

j xiφ
′(wT

j xi
)⎞⎠2

≤
K∑

j1=1

K∑
j2=1

M∑
i1=1

M∑
i2=1

(
Ex

∣∣aT
j1 xi1

∣∣4 · Ex

∣∣φ′(wT
j1 xi1

)∣∣4
· Ex

∣∣aT
j2

xi2

∣∣4 · Ex
∣∣φ′(wT

j2
xi2

)∣∣4) 1
4

≤
K∑

j1=1

K∑
j2=1

M∑
i1=1

M∑
i2=1

(
Ex

∣∣aT
j1 xi1

∣∣4 · Ex

∣∣aT
j2 xi2

∣∣4) 1
4

≤ 5M2 K‖a‖2. (60)

Since both (59) and (60) hold for any a ∈ R
K d , then

M

11κ2γ
I ≤ ∇2 f

(
W∗) ≤ 5M2 K I . (61)

From the assumption in (21) and Lemma 10, we have∥∥∇2 f (W)− ∇2 f
(
W ∗)∥∥

2 ≤ ε0 M

11κ2γ
. (62)

Combining (61) and (62) completes the whole proof.

D. Proof of Lemma 3

The main steps in this proof is to bound the three items
in (67). Lemma 11 provides the bound for case that when
i1 = i2, where X̃1 (or X̂1) and X̃2 are correlated with each
other. When i1
= i2, X̃1 (or X̂1) and X̃2 are independent,
and the corresponding results are summarized in Lemma 12.
Both Lemmas 11 and 12 use the fact that X̃1, X̃2, and
X̂1 are sub-Gaussian random variables, and the definition of
sub-Gaussian is summarized in Definition 1. In addition, the
subexponential random variable is defined in Definition 2. The
multiplication of two sub-Gaussian random variables belongs
to the subexponential distribution, and this property is used
in the proofs of Lemmas 11 and 12. The detailed proofs
of Lemmas 11 and 12 can be found in the Supplementary
Materials.

Reference [44, Lemma 5.3] provides the error bound
between ∇ f and ∇ f̂D for the fully connected neural net-
works. However, there are two major differences from our
proof. First, the error bound provided in [44] is much looser
than ours. Second, [44] only needs to consider the case
that i1 = i2 = 1 due to the fully connected neural net-
work structures. The error bound of [44, Lemma 5.3] is
O((d log N)/N)1/2(‖W∗‖2 + |ξ |), while the error bound in
Lemma 3 is O((d log d)/N)1/2(M‖W ∗ − W‖2 + |ξ |), and
M = 1 for fully connected neural networks. Since all the
analyses are based on the fact that the iterates lie in a
small neighborhood of W∗, that is ‖W (t) − W∗‖2 � ‖W ∗‖2
especially for large t . Hence, it is obvious the error bound
provided in Lemma 3 is tighter.

Definition 1 [38, Definition 5.7]: A random variable X is
called a sub-Gaussian random variable if it satisfies(

E|X |p
)1/p ≤ c1

√
p (63)

for all p ≥ 1 and some constant c1 > 0. In addition, we have

Ees(X−EX) ≤ ec2‖X‖2
ψ2

s2

(64)

for all s ∈ R and some constant c2 > 0, where ‖X‖φ2

is the sub-Gaussian norm of X defined as ‖X‖ψ2 =
supp≥1 p−1/2(E|X |p)1/p.

Moreover, a random vector X ∈ R
d belongs to the sub-

Gaussian distribution if 1-D marginal αT X is sub-Gaussian
for any α ∈ R

d , and the sub-Gaussian norm of X is defined
as ‖X‖ψ2 = sup‖α‖2=1 ‖αT X‖ψ2 .

Definition 2 [38, Definition 5.13]: A random variable X is
called a subexponential random variable if it satisfies(

E|X |p
)1/p ≤ c3 p (65)

for all p ≥ 1 and some constant c3 > 0. In addition, we have

Ees(X−EX) ≤ ec4‖X‖2
ψ1

s2

(66)

for s ≤ 1/‖X‖ψ1 and some constant c4 > 0, where
‖X‖ψ1 is the subexponential norm of X defined as ‖X‖ψ1 =
supp≥1 p−1(E|X |p)1/p.

Lemma 11: Assume X , Xh1(X) and Xh2(X) all are sub-
Gaussian random vectors in R

d , where h1 and h2 are some
fixed functions from R

d to R. Let {Xn}N
n=1 be N independent

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: IMPROVED LINEAR CONVERGENCE OF TRAINING CNNs 2633

samples of X . Then, the following holds with probability at
least 1 − d−10:∥∥∥∥∥ 1

N

N∑
n=1

Xn XT
n h1(Xn)h2(Xn)− EX XT h1(X)h2(X)

∥∥∥∥∥
2

�
√

d log d

N
‖Xh1(X)‖ψ2

‖Xh2(X)‖ψ2
.

Lemma 12: Assume X1 and X2 are two independent sub-
Gaussian random vectors in R

d . Let {X1,n}N
n=1 and {X2,n}N

n=1
be N independent samples of X1 and X2, respectively. Then,
provided that N � d log d , the following holds with probabil-
ity at least 1 − d−10:∥∥∥∥∥ 1

N

N∑
i=1

X1,n X2,n − EX1 X2

∥∥∥∥∥
2

�
√

d log d

N
‖X1‖ψ2

‖X2‖ψ2
.

Proof of Lemma 3: We have[∇ f̂D(W)
]

k

=
K∑

j=1

M∑
i1=1

M∑
i2=1

v∗
j v

∗
k

N

·
N∑

n=1

((
P i1 xn

)(
P i2 xn

)T
φ′(w j

T P i1 xn
)
φ′(wT

k P i2 xn
)
w j

−(
P i1 xn

)(
P i2 xn

)T
φ′
(
w∗

j
T P i1 xn

)
φ′(wT

k P i2 xn
)
w∗

j

)
+

M∑
i=1

v∗
j v

∗
k

N

N∑
n=1

ξn(P i xn)
Tφ′(wT

k P i xn
)

=
K∑

j=1

M∑
i1=1

M∑
i2=1

v∗
j v

∗
k

N

·
N∑

n=1

[(
P i1 xn

)(
P i2 xn

)T

· φ′
(
w∗

j
T P i1 xn

)
φ′(wT

k P i2 xn
)(

w j − w∗
j

)
+ (

P i1 xn
)(

P i2 xn
)T

·
(
φ′(wT

j P i1 xn
)−φ′

(
w∗

j
T P i1 xn

))
φ′(wT

k P i2 xn
)
w∗

j

]
+

M∑
i=1

v∗
j v

∗
k

N

N∑
n=1

ξn(P i xn)
Tφ′(wT

k P i xn
)
.

For simplification, let X̃1,n = v∗
j v

∗
k (P i1 xn)φ

′(w∗
j
T P i1 xn) and

X̃2,n = v∗
j v

∗
k (P i2 xn)φ

′(w∗
j
T P i2 xn). In addition, let X̂1,n =

v∗
j v

∗
k (P i1 xn)(φ

′(w j
T P i1 xn)− φ′(w∗

j
T P i1 xn)). Then, we have

[∇ f̂D(W)
]

k

= 1

N

∑
j,i1,i2,n

[
X̃1,n X̃

T
2,n

(
w j − w∗

j

) − X̂1,n X̃
T
2,nw

∗
j

]

+
M∑

i1=1

1

N

N∑
n=1

ξn X̃
T
1,n .

Hence, we have

[∇ f (W)]k − [∇ f̂D(W)
]

k

= 1

N

∑
j,i1,i2,n

[(
X̃1,n X̃

T
2,n − EX̃1 X̃

T
2

)(
w j − w∗

j

)
−
(

X̂1,n X̃
T
2,n − EX̂1 X̃

T
2

)
w∗

j

]
+

M∑
i1=1

1

N

N∑
n=1

ξn X̃
T
1,n . (67)

We claim that X̃1 and X̂1 belong to the sub-Gaussian distrib-
ution. According to Definition 1, for any α ∈ R

d , we have(
Ex|αT X̃1|p

)1/p

≤ (
Ex |αT P i x|p · Ex |φ′(wT

j P i x
)|p

)1/p

≤ (
Ex |αT P i x|p

)1/p ≤ √
p (68)

where the last inequality holds since P i x is a Gaussian random
vector with covariance matrix Id .

For X̂1, we have(
Ex

∣∣αT X̂1

∣∣p
)1/p

≤
(
Ex

∣∣αT P i x
∣∣p · Ex

∣∣∣φ′(w j
T P i1 xn

) − φ′
(
w∗

j
T P i1 xn

)∣∣∣p)1/p

≤ 2

π

∥∥w∗
j2

− w j2

∥∥∥∥w∗
j2

∥∥ √
p

where the last inequality comes from Lemma 10.
When i1 = i2, by Lemma 11, we have∥∥∥X̃1,n X̃

T
2,n − EX̃1 X̃

T
2

∥∥∥
2

�
√

d log d

N∥∥∥X̂1,n X̃
T
2,n − EX̂1 X̃

T
2

∥∥∥
2

�
√

d log d

N
·
∥∥w∗

j − w j

∥∥∥∥w∗
j

∥∥ (69)

with probability at least 1 − (1/d10).
When i1
= i2, from Lemma 12, we also have∥∥∥X̃1,n X̃

T
2,n − EX̃1 X̃

T
2

∥∥∥
2

�
√

d log d

N∥∥∥X̂1,n X̃
T
2,n − EX̂1 X̃

T
2

∥∥∥
2

�
√

d log d

N
·
∥∥w∗

j − w j

∥∥∥∥w∗
j

∥∥ . (70)

with probability at least 1 − d−10.
For

∑N
n=1 ξn X̃

T
1,n , we have∥∥∥∥∥ 1

N

N∑
n=1

ξn X̃1,n

∥∥∥∥∥
2

≤ |ξ | ·
∥∥∥∥∥ 1

N

N∑
n=1

P i1 xnφ
′(wT

j P i1 xn
)∥∥∥∥∥

2

≤ |ξ | ·
∥∥∥∥∥ 1

N

N∑
n=1

P i1 xn

∥∥∥∥∥
2

�
√

d log d

N
|ξ |

with probability at least 1 − d−10.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

2634 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 6, JUNE 2021

In conclusion, with probability at least 1 − K 2 M2d−10,∥∥∇ f (W)− ∇ f̂D(W)
∥∥

F

≤
K ,K ,M,M∑
k=1, j=1
i1=1,i2=1

∥∥∥∥∥ 1

N

N∑
n=1

X̃1,n X̃
T
2,n − EX̃1 X̃

T
2

∥∥∥∥∥
2

∥∥w j − w∗
j

∥∥
2

+
K ,K ,M,M∑
k=1, j=1
i1=1,i2=1

∥∥∥∥∥ 1

N

N∑
n=1

X̂1,n X̃
T
2,n − EX̂1 X̃

T
2

∥∥∥∥∥
2

∥∥w∗
j

∥∥
2

+
K ,M∑

k=1,i1=1

|ξ | ·
∥∥∥∥∥ 1

N

N∑
n=1

X̃1,n

∥∥∥∥∥
2

� M2 K 2

√
d log d

N

∥∥W − W∗∥∥
2 + M K

√
d log d

N
|ξ |.

REFERENCES

[1] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in
overparameterized neural networks, going beyond two layers,” in Proc.
Adv. Neural Inf. Process. Syst., 2019, pp. 6155–6166.

[2] O. Bousquet and A. Elisseeff, “Stability and generalization,” J. Mach.
Learn. Res., vol. 2, pp. 499–526, Mar. 2002.

[3] A. Brutzkus and A. Globerson, “Globally optimal gradient descent for a
ConvNet with Gaussian inputs,” in Proc. 34th Int. Conf. Mach. Learn.,
vol. 70, 2017, pp. 605–614.

[4] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extrac-
tion and classification of hyperspectral images based on convolutional
neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10,
pp. 6232–6251, Oct. 2016.

[5] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proc. 25th
Int. Conf. Mach. Learn. (ICML), 2008, pp. 160–167.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[7] S. S. Du, J. D. Lee, and Y. Tian, “When is a convolutional filter
easy to learn?” 2017, arXiv:1709.06129. [Online]. Available: http://arxiv.
org/abs/1709.06129

[8] S. S. Du, J. D. Lee, Y. Tian, A. Singh, and B. Poczos, “Gradient descent
learns one-hidden-layer CNN: Don’t be afraid of spurious local minima,”
in Proc. Int. Conf. Mach. Learn., 2018, pp. 1338–1347.

[9] H. Fu, Y. Chi, and Y. Liang, “Guaranteed recovery of one-hidden-layer
neural networks via cross entropy,” 2018, arXiv:1802.06463. [Online].
Available: http://arxiv.org/abs/1802.06463

[10] R. Ge, J. D. Lee, and T. Ma, “Learning one-hidden-layer neural
networks with landscape design,” in Proc. Int. Conf. Learn. Repre-
sent., 2018, pp. 1–37. [Online]. Available: https://openreview.net/forum?
id=BkwHObbRZ

[11] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011,
pp. 315–323.

[12] S. Goel, A. Klivans, and R. Meka, “Learning one convolu-
tional layer with overlapping patches,” in Proc. ICML, 2018,
pp. 1783–1791.

[13] R. H. Hahnloser and H. S. Seung, “Permitted and forbidden sets in
symmetric threshold-linear networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2001, pp. 217–223.

[14] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better:
Stability of stochastic gradient descent,” in Proc. Int. Conf. Mach.
Learn., 2016, pp. 1225–1234.

[15] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and
P. T. P. Tang, “On large-batch training for deep learning: Generalization
gap and sharp minima,” 2016, arXiv:1609.04836. [Online]. Available:
http://arxiv.org/abs/1609.04836

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[17] V. Kuleshov, A. Chaganty, and P. Liang, “Tensor factorization
via matrix factorization,” in Proc. Artif. Intell. Statist., 2015,
pp. 507–516.

[18] T. Laurent and J. Brecht, “The multilinear structure of ReLU networks,”
in Proc. Int. Conf. Mach. Learn., 2018, pp. 2908–2916.

[19] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition:
A convolutional neural-network approach,” IEEE Trans. Neural Netw.,
vol. 8, no. 1, pp. 98–113, Jan. 1997.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[22] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural networks
with ReLU activation,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 597–607.

[23] S. Liang, R. Sun, J. D. Lee, and R. Srikant, “Adding one neuron can
eliminate all bad local minima,” in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 4355–4365.

[24] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational
efficiency of training neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 855–863.

[25] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. 30th Int. Conf. Mach.
Learn., 2013, vol. 30, no. 1, pp. 1–6.

[26] Y. Nesterov, Introductory Lectures Convex Optimization: A Basic
Course, vol. 87. Boston, MA, USA: Springer, 2013.

[27] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “Exploring
generalization in deep learning,” in Proc. Adv. Neural Inf. Process. Syst.,
2017, pp. 5947–5956.

[28] B. T. Polyak, Introduction to optimization. New York, NY, USA:
Optimization Software, 1987.

[29] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychol. Rev., vol. 65, no. 6,
p. 386, 1958.

[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Cognit. Model., vol. 5, no. 3,
pp. 533–536, 1988.

[31] I. Safran and O. Shamir, “Spurious local minima are common in two-
layer ReLU neural networks,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 4430–4438.

[32] O. Shamir, “Distribution-specific hardness of learning neural networks,”
J. Mach. Learn. Res., vol. 19, no. 1, pp. 1135–1163, 2018.

[33] D. Silver et al., “Mastering the game of Go with deep neural net-
works and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
Jan. 2016.

[34] M. Soltanolkotabi, A. Javanmard, and J. D. Lee, “Theoretical insights
into the optimization landscape of over-parameterized shallow neural
networks,” IEEE Trans. Inf. Theory, vol. 65, no. 2, pp. 742–769,
Feb. 2019.

[35] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in Proc. Int. Conf.
Mach. Learn., 2013, pp. 1139–1147.

[36] Y. Tian, “An analytical formula of population gradient for two-layered
ReLU network and its applications in convergence and critical point
analysis,” in Proc. 34th Int. Conf. Mach. Learn., vol. 70, 2017,
pp. 3404–3413.

[37] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,”
Found. Comput. Math., vol. 12, no. 4, pp. 389–434, Aug. 2012.

[38] R. Vershynin, “Introduction to the non-asymptotic analysis of random
matrices,” 2010, arXiv:1011.3027. [Online]. Available: http://arxiv.org/
abs/1011.3027

[39] G. Wang, G. B. Giannakis, and J. Chen, “Learning ReLU networks on
linearly separable data: Algorithm, optimality, and generalization,” IEEE
Trans. Signal Process., vol. 67, no. 9, pp. 2357–2370, May 2019.

[40] S. Wu, A. G. Dimakis, and S. Sanghavi, “Learning distributions gener-
ated by one-layer ReLU networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 8105–8115.

[41] T. Yang, Q. Lin, and Z. Li, “Unified convergence analysis of stochastic
momentum methods for convex and non-convex optimization,” 2016,
arXiv:1604.03257. [Online]. Available: http://arxiv.org/abs/1604.03257

[42] G. Yehudai and O. Shamir, “On the power and limitations of random
features for understanding neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 6594–6604.

[43] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Under-
standing deep learning requires rethinking generalization,” 2016,
arXiv:1611.03530. [Online]. Available: http://arxiv.org/abs/1611.03530

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: IMPROVED LINEAR CONVERGENCE OF TRAINING CNNs 2635

[44] X. Zhang, Y. Yu, L. Wang, and Q. Gu, “Learning one-hidden-layer ReLU
networks via gradient descent,” in Proc. 22nd Int. Conf. Artif. Intell.
Statist., 2019, pp. 1524–1534.

[45] K. Zhong, Z. Song, and I. S. Dhillon, “Learning non-overlapping
convolutional neural networks with multiple kernels,” 2017,
arXiv:1711.03440. [Online]. Available: http://arxiv.org/abs/1711.03440

[46] K. Zhong, Z. Song, P. Jain, P. L. Bartlett, and I. S. Dhillon, “Recovery
guarantees for one-hidden-layer neural networks,” in Proc. 34th Int.
Conf. Mach. Learn., vol. 70, 2017, pp, 4140–4149. [Online]. Available:
https://arxiv.org/abs/1706.03175

Shuai Zhang (Graduate Student Member, IEEE)
received the B.E. degree from the University of
Science and Technology of China, Hefei, China,
in 2016. He is currently pursuing the Ph.D. degree
in electrical engineering with the Rensselaer Poly-
technic Institute, Troy, NY, USA.

His research interests include signal processing
and high dimensional data analysis.

Meng Wang (Member, IEEE) received the Ph.D.
degree from Cornell University, Ithaca, NY, USA,
in 2012.

She is currently an Associate Professor with the
Department of Electrical, Computer, and Systems
Engineering, Rensselaer Polytechnic Institute, Troy,
NY, USA. Her research interests include high-
dimensional data analysis and their applications in
power systems monitoring and network inference.

Jinjun Xiong (Senior Member, IEEE) received the
Ph.D. degree from the University of California, Los
Angeles, CA, USA, in 2006.

He is currently a Research Staff Member and the
Program Director for cognitive computing systems
research with the IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, USA, where he
also co-directs the IBM-Illinois Center for Cognitive
Computing Systems Research. His research interests
include artificial intelligence, machine learning, and
systems.

Dr. Xiong received six best paper awards and eight nominations for best
paper awards at various international conferences.

Sijia Liu (Member, IEEE) received the Ph.D.
degree in electrical and computer engineering from
Syracuse University, Syracuse, NY, USA, in 2016.

He was a Post-Doctoral Research Fellow with
the University of Michigan at Ann Arbor, Ann
Arbor, MI, USA. He joined the IBM Research, San
Jose, CA, USA, where he is currently a Research
Staff Member with the MIT–IBM Watson AI Lab,
Cambridge, MA, USA. His recent research interests
include optimization for deep learning and adversar-
ial machine learning.

Dr. Liu received the All-University Doctoral Prize for his Ph.D. degree.
He received the Best Student Paper Award (Third Place) at ICASSP’17.
He was among the seven finalists of the Best Student Paper Award at
Asilomar’13.

Pin-Yu Chen (Member, IEEE) received the Ph.D.
degree in electrical engineering and computer sci-
ence from the University of Michigan at Ann Arbor,
Ann Arbor, MI, USA, in 2016.

He is currently a Research Staff Member with the
IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, USA. He is also the Chief Scientist
of RPI-IBM AI Research Collaboration and a PI of
the ongoing MIT–IBM Watson AI Lab projects. His
recent research is on adversarial machine learning
and robustness of neural networks. His long-term

research vision is building a trustworthy machine learning system.
Dr. Chen received the NeurIPS 2017 Best Reviewer Award and the IEEE

GLOBECOM 2010 GOLD Best Paper Award.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

