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Abstract—This paper studies the multichannel missing data
recovery problem when the measurements are generated by a
dynamical system. A new model, termed multichannel low-rank
Hankel matrices, is proposed to characterize the intrinsic low-
dimensional structures in multichannel time series. The data
recovery problem is formulated as a nonconvex optimization
problem, and two fast algorithms (AM-FIHT and RAM-FIHT),
both with linear convergence rates, are developed to recover the
missing points with provable performance guarantees. The re-
quired number of observations is significantly reduced, compared
with conventional low-rank completion methods. Our methods
are verified through numerical experiments on synthetic data and
recorded synchrophasor data in power systems.

Index Terms—Low-rank matrix completion, nonconvex opti-
mization, Hankel matrix, linear dynamic systems, synchrophasor
data.

I. INTRODUCTION

M ISSING data recovery is an important task in various ap-
plications such as covariance estimation from partially

observed correlations in remote sensing [10], multi-class learn-
ing in machine learning [3], [8], the Netflix Prize [1] problem
and other similar questions in collaborative filtering [19]. More-
over, the recent framework of super-resolution enables accurate
signal recovery from sparsely sampled measurements [9]. Ex-
ample applications include magnetic resonance imaging (MRI)
[21], [25], [43] and target localization in radar imaging [12],
[47]. In power system monitoring, Phasor Measurement Units
(PMU) [39] can measure voltage and current phasors directly
at various locations and transmit the measurements to the op-
erator for state estimation [2], [14] or disturbance identification
[31]. Some PMU data points, however, do not reach the operator
due to PMU malfunction or communication congestions. These
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missing data points should be recovered for the subsequent ap-
plications on PMU data [18].

Since practical datasets often have intrinsic low-dimensional
structures, the missing data recovery problem can be formulated
as a low-rank matrix completion problem, which is nonconvex
due to the rank constraint. Its convex relaxation, termed Nuclear
Norm Minimization (NNM) problem, has been extensively in-
vestigated [8], [11], [16], [20]. Given an nc × n (nc ≤ n) ma-
trix with rank r (r � n), as long as O(rn log2 n)1 entries are
observed, one can recover the remaining entries accurately by
solving NNM [8], [11], [20].

Although elegant theoretical analyses exist, convex ap-
proaches like NNM have high computational complexity and
poor convergence rate. For example, to decompose an nc × n
matrix, the per-iteration complexity of the best specialized im-
plementation is O(n2

c n) [36]. To reduce the computational com-
plexity, first-order algorithms like [24] have been developed to
solve the non-convex problem directly. Despite the numerical
superiority, the theoretical analyses of the convergence and re-
covery performance of these nonconvex methods are still open
problems. Only a few recent work such as [7], [24] provided
such analyses on a case-by-base basis.

The low-rank matrix model, however, does not capture the
temporal correlations in time series. A permutation of measure-
ments at different time steps would result in different time series,
but the rank of the data matrix remains the same. As a result,
low-rank matrix completion methods require at least r entries in
each column/row to recover the missing points and would fail if
a complete column/row was lost. They cannot recover simulta-
neous data losses among all channels. Simultaneous data losses
are not uncommon in power systems due to communication
congestions.

There is limited study of the coupling of low-dimensional
models and temporal correlations. Parametric models like hid-
den Markov models [33], [35] and autoregression (AR) models
[22], [34] are employed to model temporal correlations. The
accuracy of the algorithms depends on the correct estimation of
model parameters, and no theoretical analysis is reported.

This paper develops a new model to characterize the intrinsic
structures of multiple time series that are generated by a linear
dynamical system. Our model of multi-channel low-rank Hankel
matrix characterizes the temporal correlations in time series like
PMU data without directly modeling the dynamical systems and
estimating the system parameters. Our model can also be viewed
as an extension of the single-channel low-rank Hankel matrix

1f (n) = O(g(n)) means that if for some constant C > 0, f (n) ≤ Cg(n)
holds when n is sufficiently large. f (n) = Θ(g(n)) means that for some con-
stants C1 > 0 and C2 > 0, C1 g(n) ≤ f (n) ≤ C2 g(n) holds when n is suffi-
ciently large.
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model with a Θ(r) degree of freedom in [7], [12] to an nc -
channel matrix with a Θ(ncr) degree of freedom. It can also
characterize spectrally sparse signals in applications like radar
imaging [41] and magnetic resonance imaging [30].

Building upon the FIHT algorithm [7], this paper proposes
two fast algorithms, termed accelerated multi-channel fast itera-
tive hard thresholding (AM-FIHT) and robust AM-FIHT (RAM-
FIHT) for multi-channel low-rank Hankel matrix completion.
They can recover missing points for simultaneous data losses.
The heavy ball method [29], [40] is employed to accelerate
the convergence rate, and the acceleration is evaluated theoret-
ically and numerically. Our algorithms converge linearly with
a low per iteration complexity O(r2ncn + rncn log n + r3) to
the original matrix (noiseless measurements) or a sufficiently
close matrix depending on the noise level (noisy measurements).
Theoretical analyses of FIHT with only noiseless measurements
are reported [7]. Moreover, the recovery is successful as long
as the number of observed measurements is O(r2 log2 n), sig-
nificantly lower than O(rn log2 n) for general rank-r matrices.
This number is also a constant fraction of the required number
of measurements by applying the single-channel Hankel matrix
completion methods like FIHT [7] to each channel separately.

The rest of the paper is organized as follows. Sections II and
III describe the problem formulation and the connection with the
existing work. Sections IV and V present our algorithms and the
theoretical analyses. Section VI records the numerical results on
synthetic data and recorded PMU data. Section VII concludes
the paper. All the proofs are summarized in Appendix.

Notation: Vectors are bold lowercase, matrices are bold up-
percase, and scalars are in normal font. For example, Z is a
matrix and z is vector. Zi∗ denotes the ith row of Z, and Zij

denotes the (i, j)-th entry of Z. I and ei denote the identity
matrix and the ith standard basis vector. ZT and Z∗ denote the
transpose and conjugate transpose of Z, so as zT and z∗. The
inner product between two vectors is 〈z1 ,z2〉 = z∗

2z1 , and cor-
responding l2 norm is ‖z‖ = 〈z,z〉1/2 . For matrices, the inner
product is defined as 〈Z1 ,Z2〉 = Tr(Z∗

2Z1). ‖Z‖F stands for
the Frobenius norm with ‖Z‖F = 〈Z,Z〉1/2 . The spectral norm
of matrix Z is denoted by ‖Z‖. The maximum entry (in abso-
lute value) of Z is denoted as ‖Z‖∞. Linear operators on matrix
spaces will be denoted by calligraphic letters. In particular, I
is the identity operator. The spectral norm of a linear operator
A on matrix spaces is denoted as ‖A‖ = sup〈Z,Z〉≤1 ‖AZ‖F .
The adjoint operator of A is denoted as A∗, which satisfies
〈AZ1 ,Z2〉 = 〈Z1 ,A∗Z2〉.

II. PROBLEM FORMULATION

Consider an np -th order linear dynamical system after an im-
pulse response. Let st ∈ Cnp and xt ∈ Cnc denote deviations
of state variables and observations at time t from the equilibrium
point. Then we have

st+1 = Ast , xt = Cst , t = 1, 2, . . . , n, (1)

where A ∈ Cnp ×np , and C ∈ Cnc ×np . Let X contain the mea-
surements from time 1 to n,

X = [x1 , x2 , . . . , xn ] ∈ Cnc ×n . (2)

Further, the Hankel matrix of X is defined as

HX =

⎡
⎢⎢⎣

x1 x2 · · · xn2

x2 x3 · · · xn2+1
...

...
. . .

...
xn1 xn1+1 · · · xn

⎤
⎥⎥⎦ ∈ Cnc n1 ×n2 , (3)

where n1 + n2 = n + 1.
Suppose A could be diagonalized, denoted by A = PΛP−1 ,

where P = [l1 , l2 , . . . , lnp
], P−1 = [r1 , r2 , . . . , rnp

]∗, and
(·)∗ stands for the conjugate transpose. Λ = diag(λ1 , λ2 , . . . ,
λnp

) contains the eigenvalues of A. Then

xt+1 = C A · · ·A︸ ︷︷ ︸
t times

s1 = CAts1 = CPΛtP−1s1

=
np∑
i=1

λt
ir

∗
i s1Cli . (4)

All np modes of the system are considered in (4). In practice,
a mode might be highly damped (|λi | ≈ 0), or not excited by
the input (|r∗

i s1 | ≈ 0), or not directly measured (‖Cli‖ ≈ 0). If
only r (r � n) out of n modes are significant, assuming these
modes to be λ1 ,..., λr for simplicity, we have

xt+1 �
r∑

i=1

λt
ir

∗
i s1Cli . (5)

Then the corresponding Hankel matrix can be written as

HX =

⎡
⎢⎢⎣

x1 x2 · · · xn2

x2 x3 · · · xn2 +1
...

...
. . .

...
xn1 xn1 +1 · · · xn

⎤
⎥⎥⎦ = P LΓP T

R , (6)

where

P L =

⎡
⎢⎢⎣

Inc
Inc

· · · Inc

λ1Inc
λ2Inc

· · · λrInc

...
...

. . .
...

λ
n1 −1
1 Inc

λ
n1 −1
2 Inc

· · · λn1 −1
r Inc

⎤
⎥⎥⎦ ∈ Cnc n1 ×nc r ,

(7)

Γ =

⎡
⎢⎢⎣

r∗
1x1Cl1 0 · · · 0

0 r∗
2x1Cl2 · · · 0

...
...

. . .
...

0 0 · · · r∗
rx1Clr

⎤
⎥⎥⎦ ∈ Cnc r×r ,

(8)
and

P R =

⎡
⎢⎢⎣

1 1 · · · 1
λ1 λ2 · · · λr

...
...

. . .
...

λ
n2−1
1 λ

n2−1
2 · · · λn2−1

r

⎤
⎥⎥⎦ ∈ Cn2 ×r , (9)

where Inc
∈ Cnc ×nc is the identity matrix. One can check that

both X and HX are rank r matrices.2

Let N ∈ Cnc ×n denote the measurement noise. M = X +
N denotes the noisy measurements. Some entries of M are
not observed due to data losses. Let Ω̂ denote the index set
of observed entries. The objective of missing data recovery is
to reconstruct the missing data based on the observed entries
PΩ̂ (M). Since the rank of HX is r, the data recovery problem
can be formulated as

min
Z∈Cn c ×n

∥∥PΩ̂ (Z − M)
∥∥2

F
subject to rank(HZ) = r, (10)

2We assume HX is exactly rank r throughout the paper. The methods anal-
yses can be extended to approximately low-rank matrices with minor modifi-
cations. If HX is approximately low-rank, i.e., its rank-r approximation error
is very small, we seek to find the best rank-r approximation to HX. Then the
recovery error is at least the approximation error.
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where PΩ̂ (·) is the sampling operator with (PΩ̂ (Z))ij = Zij if

(i, j) ∈ Ω̂ and 0 otherwise. (10) is a nonconvex problem due
to the rank constraint. It reduces to the conventional matrix
completion problem when n1 = 1.

Clearly, the recovery is impossible if X is in the null space
of PΩ̂ (·). Here we follow the standard incoherence assumption
in low-rank matrix completion [11].

Definition 1: A matrix Z ∈ Cl1 ×l2 with singular value de-
composition (SVD) as Z = UΣV ∗, is said to be incoherent
with parameter μ if

max
1≤k1 ≤l1

∥∥e∗
k1

U
∥∥2 ≤ μr

l1
, max

1≤k2 ≤l2

∥∥e∗
k2

V
∥∥2 ≤ μr

l2
, (11)

where ek1,ek2 are the coordinate unit vectors.
The incoherence definition guarantees that the singular vec-

tors of the matrix are sufficiently spread, and PΩ̂ (·) samples
enough information about the matrix. We focus on recovering
μ-incoherence matrices in this paper.

III. BACKGROUND AND RELATED WORK

The low-rank property of a Hankel matrix is also recently ex-
ploited in the direction of arrival (DOA) problem in array signal
processing [12], [47], MRI image recovery from undersampled
measurements [21], [37], [48], video inpainting [15] and sys-
tem identification [17]. To see the connection with our model,
the kth row of X in (2), denoted by Xk∗, can be equivalently
viewed as the discrete samples of a spectrally sparse signal gk (t),
which is a weighted sum of r damped or undamped sinusoids at
t = {0, ..., n − 1}, where

gk (t) =
r∑

i=1

dk,ie
(2π ıfi −τi )t , k = 1, ..., nc , (12)

and fi and dk,i are the frequency and the normalized complex
amplitude of the ith sinusoid, respectively. ı is the imaginary
unit. The connection between (12) and (2) is that λi = e2π ıfi −τi

and dk,i = r∗
i s1Ck∗li .

The signal of interest itself in array signal processing is spec-
trally sparse. In MRI imaging, if a signal reduces to a sparse
linear combination of Dirac delta functions under some trans-
formations, then its Fourier transform is a sum of a few sinusoids
[25], [38], [48]. Most existing work on low-rank Hankel matri-
ces studied single-channel signals, i.e., nc = 1 in our setup.
References [12], [26], [37], [38] considered 2-dimensional (2-
D) and higher-dimensional signals, while a 2-D signal is still
a sum of r 2-D sinusoids, and the degree of freedom is still
Θ(r). The focus of this paper is multi-channel signals with
nc > 1. Each signal is a weighted sum of the same set of r
sinusoids, while the weights dk,i are different for each channel
k = 1, ..., nc . The degree of the freedom of (12) is Θ(ncr).

The multi-channel signal in (12) is related to the multiple
measurement vector (MMV) problem [13]. References [27],
[47] considered data recovery of MMV when the signals are
linear combinations of undamped sinusoids, i.e., τi = 0 for all
i in (12). The data recovery is achieved in [27], [47] through
atomic norm minimization, which requires solving large-scale
semidefinite programs. Besides the high computational com-

plexity, it is not clear how the atomic norm can be extended to
handle damped sinusoids, i.e., τi �= 0. References [4], [25] stud-
ied multi-channel signal recovery using Hankel structures and
can thus handle damped sinusoids. Despite the numerical evalu-
ations, there is no theoretical analysis of the recovery guarantee

Algorithm 1: AM-FIHT FOR DATA RECOVERY FROM NOISE-
LESS MEASUREMENTS.
Require PΩ̂ (M), n1 , n2 , r

1: Set W−2 = 0, W−1 = p−1HPΩ̂ (M), L0 =
Qr (W−1);

2: Initialize X0 = H†L0 ;
3: for l = 0, 1, · · · do
4: Gl = PΩ̂ (M − X l);
5: W l =PSl

(H(X l + p−1Gl)+β(W l−1 −W l−2));
6: Ll+1 = Qr (W l);
7: X l+1 = H†Ll+1 ;
8: end for
9: return X l

in [4], [25]. This paper provides analytical recovery guarantees
for multi-channel damped and undamped sinusoids.

The recovery of a low-rank Hankel matrix can be formu-
lated as a convex optimization, for example, nuclear norm min-
imization for missing data recovery [15], [17], [25], [37], [45],
[48] and minimizing a weighted sum of the nuclear norm and
the �1 norm for bad data correction [26]. Since it is computa-
tionally challenging to solve these convex problems for high-
dimensional Hankel matrices, fast algorithms to recover missing
points in single-channel [7] and multi-channel Hankel matrices
[5], [15] are proposed recently. Although numerical results are
reported in [5], [15], only [7] provides the theoretical perfor-
mance analysis of the proposed fast iterative hard thresholding
(FIHT) algorithm for single-channel Hankel matrix recovery.
FIHT is a projected gradient descent method. In each itera-
tion, the algorithm updates the estimate along the gradient de-
scent direction and then projects it to a rank-r matrix. To re-
duce the computational complexity, instead of solving singular
value decomposition (SVD) directly, FIHT first projects a ma-
trix onto a 2r-dimensional subspace and then computes the SVD
of the rank-2r matrix. The per-iteration complexity of FIHT is
O(r2n + rn log n + r3).

Motivated by PMU data analysis in power systems, this paper
connects dynamical systems with low-rank Hankel matrices. It
develops fast data recovery algorithms for multi-channel Hankel
matrices with provable performance guarantees.

IV. DATA RECOVERY ALGORITHMS

Here we describe two algorithms to solve (10) and defer
the theoretical analyses to Section V. One is accelerated multi-
channel fast iterative hard thresholding algorithm (AM-FIHT),
and the other one is robust AM-FIHT (RAM-FIHT). Both
algorithms are built upon the FIHT [7] with some major differ-
ences. First, FIHT recovers the missing points of one spectrally
sparse signal, while (R)AM-FIHT recovers the missing points
of nc signals simultaneously. The simultaneous recovery can
reduce the required number of measurements, as quantified in
Theorem 5. Second, (R)AM-FIHT has a heavy-ball step [29],
[40], e.g., term β(W l−1 − W l−2) in line 5 of Algorithm 1 and
line 14 of Algorithm 2, while FIHT does not. The basic idea
of the heavy ball method is to compute the search direction us-
ing a linear combination of the gradient at the current iterate
and the update direction in the previous step, rather than being
memoryless of the past iterates’ trajectory [29]. We will show
analytically that with the heavy-ball step, AM-FIHT converges
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Algorithm 2: RAM-FIHT.

Require PΩ̂ (M), n1 , n2 , r, μ, and β.

1: Partition Ω̂ into L + 1 disjoint sets Ω̂0 , Ω̂1 , . . . , Ω̂L of
equal size m̂, let p̂ = m̂

n .
2: Set W−2 = 0, W−1 = p̂−1HPΩ̂0

(M),
L0 = Qr (W−1);

3: for l = 0, 1, . . ., L − 1 do
4: [U l ,Σl ,V l ] =SVD(Ll);
5: for i = 1, 2, . . . , ncn1 do

6: (Al)i∗ =
(U l)i∗

‖(U l)i∗‖ min
{
‖(U l)i∗‖ ,

√
μr

ncn1

}
;

7: end for
8: for i = 1, 2, . . . , n2 do

9: (Bl)i∗ =
(V l)i∗
‖(V l)i∗‖ min

{
‖(V l)i∗‖ ,

√
μr

n2

}
;

10: end for
11: L′

l = AlΣlB
∗
l ;

12: X̂ l = H†L′
l ;

13: Gl = PΩ̂ l + 1
(M − X̂ l);

14: W l = PS′
l
(H(X̂l + p̂−1Gl) + β(W l−1 − W l−2));

15: Ll+1 = Qr (W l);
16: end for
17: return XL = H†LL ;

faster while maintaining the recovery accuracy (Theorem 2).
Third, we provide the theoretical guarantee of data recovery
when the measurements are noisy (Theorem 4), while [7] only
has the performance guarantee of FIHT using noiseless mea-
surements.

In both algorithms, M , X l , Gl ∈ Cnc ×n , and W l , ΔW l ,
Ll ∈ Cnc n1 ×n2 . Ll is a rank-r matrix and its SVD is denoted
as Ll = U lΣlV

∗
l , where U l ∈ Cnc n1 ×r , V l ∈ Cn2 ×r and

Σl ∈ Cr×r . Sl is the tangent subspace of the rank-r Rieman-
nian manifold at Ll , and for any matrix Z ∈ Cnc n1 ×n2 , the
projection of Z onto Sl is defined as

PSl
(Z) = U lU

∗
l Z + ZV lV

∗
l − U lU

∗
l ZV lV

∗
l . (13)

Qr finds the best rank-r approximation as

Qr (Z) =
r∑

i=1

σiuiv
∗
i , (14)

if Z =
∑

i σiuiv
∗
i is the SVD of Z with σ1 ≥ σ2 ≥ · · · . H†

is the Moore-Penrose pseudoinverse of H. For any matrix
Z ∈ Cnc n1 ×n2 , (H†Z) ∈ Cnc ×n satisfies

〈H†Z,eke∗
t 〉 =

1
wt

∑
k1 +k2 =t+1

Z(k1 −1)nc +k,k2, (15)

where wt = #{(k1 , k2)|k1 + k2 = t + 1, 1 ≤ k1 ≤ n1 , 1 ≤
k2 ≤ n2} as the number of elements in the t-th anti-diagonal
of an n1 × n2 matrix.

The key steps in AM-FIHT are as follows. Here the mea-
surements are noiseless, thus M = X . In each iteration, we
first update current X l along the gradient descent direction Gl ,
with a step size p−1 = nc n

m , where m is the number of observed
entries. To improve the convergence rate, the update is further
combined with additional heavy-ball term β(W l−1 − W l−2),
which represents the update direction in the previous iteration.
Next, H(X l + p−1Gl) + β(W l−1 − W l−2) is projected to a
rank-r matrix. To reduce the computational complexity, we first
project it to the 2r-dimensional space Sl and then apply SVD on

the rank-2r matrix [7], instead of directly computing its SVD.
The rank-r matrix Ll+1 is obtained in line 7 by thresholding
the singular values of the rank-2r matrix W l . Finally, X l+1 is
updated by H†Ll+1 .

The analysis of the computational complexity of AM-FIHT
is similar to that of FIHT [7] with some modifications for the
nc -channel signal and the heavy-ball step. Details are in the sup-
plementary materials. The computational complexity of solv-
ing SVD of a matrix in Cnc n1 ×n2 is generally O(ncn

2r). Due
to the low rank structure of the matrices in Sl , the SVD of
W l ∈ Cnc n1 ×n2 can be computed in O(ncnr2 + r3) via QR
decompositions and SVD on a 2r × 2r matrix [7]. Moreover,
it is not necessary to construct Hankel matrices following (3)
explicitly. The matrix multiplication of U ∗

l HX l ∈ Cr×n2 and
(HX l)V l ∈ Cnc n1 ×r in line 5 can be completed via fast con-
volution algorithms with O(ncnr log(n)) flops, instead of the
conventional complexity of O(ncn

2r). Similar analysis can be
applied to line 7, which costs O(ncnr log(n)) flops to compute
X l+1 from the SVD of Ll+1 directly.

With the heavy ball term, since the SVDs of W l−1 and
W l−2 have been obtained in the last two steps, we compute
PSl

(W l−1) − PSl
(W l−2) in line 5. From (13), the compu-

tation of U lU
∗
l ZV lV

∗
l plays the dominant part in comput-

ing PSl
(Z). Let W l = UW l

ΣW l
V ∗

W l
denote the SVD of

W l , where UW l
∈ Cnc n1 ×2r ,V W l

∈ Cn2 ×2r . Then comput-
ing U ∗

l UW l−1 and V ∗
W l−1

V l requires O(ncnr2) and O(nr2)
flops, respectively. Computing U ∗

l UW l−1 ΣW l−1 V
∗
W l−1

V l fur-
ther requires O(r3) flops.

From the above analysis, line 4 requires O(ncn) flops.
The complexity of line 5 is O(ncnr log(n) + ncnr2 + r3).
Line 6 requires O(ncnr2 + r3) flops, and line 7 requires
O(ncnr log(n)) flops. Thus, the total per-iteration complexity
of AM-FIHT is O(r2ncn + rncn log n + r3).

RAM-FIHT differs from AM-FIHT mainly in resampling
(line 1) and trimming (lines 5–10). The resampling and trim-
ming are used in [7] to improve the initialization of FIHT. Here
we apply these ideas in the data recovery algorithm and prove
in Theorem 4 that the resulting RAM-FIHT can recover the
matrix even when the observed measurements are noisy. There
is no analytical analysis of FIHT on noisy measurements in
[7]. Moreover, compared with AM-FIHT, we provide tighter
bounds of the required number of observations for RAM-FIHT
(comparing Theorems 1 and 3).

In RAM-FIHT, the sampling set Ω̂ is divided into L disjoint
subsets Ω̂l’s. During the l-th iteration, Ll is updated using the
observed entries in Ω̂l , instead of using all the entries in Ω̂ as in
AM-FIHT. The partition of the sampling set is a standard tech-
nique in analyzing matrix completion (MC) problems [42]. The
disjointness of Ll’s in different iterations simplifies the theoreti-
cal analyses,3 since it ensures the independence between X l and
X l+1 . The trimming procedure ensures that the estimate in each
iteration remains close to μ-incoherent, which in turn helps to
obtain tighter bounds of the recovery performance in Theorem
3. We remark that the resampling and trimming steps in RAM-
FIHT are introduced mainly to simplify the theoretical analyses
and obtain tighter bounds, while we observe numerically that
AM-FIHT and RAM-FIHT perform similarly in Section VI.
The per iteration computational complexity of RAM-FIHT is
O(r2ncn + rncn log n + r3).

3In fact, we only need the mutual independence among the subsets Ω̂l ’s, and
the disjoint partition is a sufficient condition.
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V. THEORETICAL ANALYSES

The theoretical analyses of the convergence rates and recov-
ery accuracy of AM-FIHT and RAM-FIHT are summarized
in the following four theorems. All the proofs are deferred to
the Appendix. Theorem 1 records the recovery performance of
AM-FIHT using noiseless measurements with β = 0. Theorem
2 shows that the convergence rate of AM-FIHT can be further
improved by using a small positive β. Theorems 3 and 4 dis-
cuss the recovery performance of RAM-FIHT from noiseless
and noisy measurements, respectively. We also compare the
recovery performance with recovering missing points on each
individual row of X separately and quantify the performance
gain of our algorithms in Theorem 5.

Theorem 1: (AM-FIHT with noiseless measurements.) As-
sume HX is μ-incoherent. Let 0 < ε0 < 1

10 be a numeri-
cal constant and ν = 6ε0 < 1. Then with probability at least
1 − 3ncn

−2 , the iterates X l’s generated by AM-FIHT with
β = 0 satisfy

‖X l − X‖F ≤ νl−1 ‖L0 −HX‖F , (16)

provided that

m ≥ C1 max
{

μcsr log(n)
ε2

0
,
1 + ε0

ε0
(ncμcsn)

1
2 κr log

3
2 (n)

}

(17)
for some constant C1 > 0, where κ = σm a x (HX)

σm in (HX) denotes the
condition number of HX and cs = max{ n

n1
, n

n2
}.

Theorem 1 indicates that if the number of noiseless
observations is O(rn1/2

c n1/2 log3/2(n)), then AM-FIHT is
guaranteed to recover X exactly. Moreover, from (16),
the iterates generated by AM-FIHT converge linearly
to the groundtruth X , and the rate of convergence is
ν. Since X is rank r, if one directly applies a conventional low-
rank matrix completion method such as NNM ([8], [11], [20]),
the required number of observations is O(rn log2(n)). Thus,
when n is large, by exploiting the low-rank Hankel structure of
correlated time series, the required number of measurements is
significantly reduced. Note that the degree of freedom of X is
Θ(ncr), as one can see from (12), the required number of ob-
servations by Theorem 1 is suboptimal due to the dependence
upon n. This results from the artefacts in our proof techniques.
We will provide a tighter bound for RAM-FIHT in Theorem 3.

The required number of measurements depends on cs , which
is minimized when n1 = n2 = n+1

2 . In practice, the selection of
n1 and n2 of the Hankel matrix is also affected by the accuracy
of the low-rank approximation.

We set β as 0 in Theorem 1 to simplify the analyses. The
improvement of the convergence rate by using a positive β is
quantified in the following theorem.

Theorem 2: (Faster convergence with a heavy-ball step)
Given any β ∈ [0, τ) for some τ > 0, let X l’s denote the con-
vergent iterates returned by AM-FIHT. There exists an integer
s0 , a constant q ∈ (0, 1) that depends on β such that

‖Xs0 +k − X‖F ≤ c(δ)(q(β) + δ)k , ∀k ≥ 0 (18)

holds for any δ ∈ (0, 1 − q(β)) and a positive c(δ) that depends
on δ. Moreover,

q(0) > q(β), ∀β ∈ (0, τ). (19)

The exact expressions of q and τ are deferred to the proofs in
Appendix (53). Theorem 2 indicates that by adding a heavy-ball
term, when close enough to the ground-truth X , the iterates
converge linearly to X , and the rate of convergence is q(β) +

δ. Moreover, from (19), with a small positive β, the iterates
converge faster than those without the heavy-ball step. Such
improvement is numerically evaluated in Section VI.

Theorem 3: (RAM-FIHT with noiseless measurements) As-
sume HX is μ-incoherent. Let 0 < ε0 < 1

2 and

L =
⌈
ε−1

0 log
(σmax(HX)

128κ3ε

)⌉
. (20)

Define ν = 2ε0 < 1. Then with probability at least 1 − (2L +
3)ncn

−2 , for any arbitrarily small constant ε > 0, the iterates
Ll’s and XL generated by RAM-FIHT with β = 0 satisfy

‖Ll − X‖F ≤ νl ‖L0 −HX‖F , 1 ≤ l ≤ L,

and ‖XL − X‖F ≤ νL ‖L0 −HX‖F ≤ ε,

provided that

m ≥ C2ε
−3
0 μcsκ

6r2 log(n) log
(σmax(HX)

κ3ε

)
(21)

for some constant C2 > 0.
Theorem 3 shows that the iterates of RAM-FIHT converge

to the groundtruth X with a linear convergence rate, and the
number of required measurements is further reduced from that
needed by AM-FIHT. To see this, note that σmax(HX) ≤√

ncn‖X‖∞. If ‖X‖∞ is a constant, and select ε = O(n−α )
with a positive constant α, we have L = O(log(n)) from (20)
and m ≥ O(r2 log2 n) from (21). Compared with the bound
of O(rn1/2

c n1/2 log3/2(n)) in Theorem 1, the dependence on
n is significantly reduced to log2 n, while the dependence on
r is worse, from r to r2 . Since r is usually very small, and
n is much larger, O(r2 log2 n) by Theorem 3 is tighter than
O(rn1/2

c n1/2 log3/2(n)) by Theorem 1. Since the degree of
freedom of Θ(ncr), we suspect that the bound could be im-
proved further using better proof techniques than ours.

Theorem 4: (RAM-FIHT with noisy measurements) As-
sume HX is μ-incoherent and

‖N‖∞ ≤ ε0 ‖HX‖
2048κ3r1/2n

1/2
c n

. (22)

Let L = �ε−1
0 log(σm a x (HX)

128κ3 ε )� and 0 < ε0 < 1
4 . Define ν =

2ε0 < 1
2 . Then with probability at least 1 − (3L + 3)ncn

−2

and for any arbitrarily small constant ε > 0, the iterates Ll’s
(l = 1, ..., L) generated by RAM-FIHT with β = 0 satisfies

‖Ll −HX‖F ≤ νl ‖L0 −HX‖F

+ 128n1/2
c n ‖N‖∞ + 8r1/2‖HN‖,

and

‖LL −HX‖F ≤ ε + 128n1/2
c n ‖N‖∞ + 8r1/2 ‖HN‖ ,

(23)
provided that

m ≥ C3ε
−3
0 μcsκ

6r3 log(n) log
(σmax(HX)

κ3ε

)
(24)

for some constant C3 > 0.
Theorem 4 explores the performance of RAM-FIHT in the

noisy case. Note that ‖HX‖∞ = ‖X‖∞, and

n
1/2
c n

μcsr
‖HX‖∞ ≤ ‖HX‖ ≤ n1/2

c n ‖HX‖∞.

If μ and r are both constants, (22) implies that ‖N‖∞ can
be as large as a constant fraction of ‖X‖∞. When the num-
ber of observations is at least O(r3 log2(n)), the error between
the ground truth and the iterates returned by RAM-FIHT is
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controlled by the noise level. To evaluate the optimality of
this error bound, consider a special case that X is a constant
matrix with each entry being c, and N is a constant matrix
with each entry being −c. Then every observation is zero, and
the estimated matrix from partial observations by any recov-
ery method would be a zero matrix. Then the recovery error is
‖HN‖F =

√
ncn1n2 |c| =

√
ncn1n2 ‖N‖∞. The sum of the

second and the third term in the right hand side of (23) is bounded
by (128cs + 8r1/2)

√
ncn1n2 ‖N‖∞. Thus, the error bound of

RAM-FIHT is in the same order of the minimum error by any
method.

Comparison with single-channel missing data recovery:
FIHT [7] is a single-channel Hankel matrix completion method.
When nc = 1, Theorems 1 and 3 reduce to the results in [7].
One can apply FIHT to recover the missing points of each
row of X and solve nc data recovery problems separately. Let
HXk∗ denote the single-channel Hankel matrix constructed
from the kth row of X . Suppose HXk∗ is μ0-incoherent for
every 1 ≤ k ≤ nc . Then setting nc = 1 in Theorems 1 and 3 (or
using Theorems 1 and 2 in [7]), we know that if each HXk∗
is recovered separately, the required number of measurements
is proportional to

√
μ0 (AM-FIHT) or μ0 (RAM-FIHT). Then

the total number of observations to recover X is proportional
to nc

√
μ0 or ncμ0 . In contrast, the required number of observa-

tions by our methods is proportional to
√

ncμ (AM-FIHT) or μ
(RAM-FIHT). Thus, the ratio of the number of measurements by

our method to FIHT is
√

μ
nc μ0

(or μ
nc μ0

). We can show that our

method only requires a constant fraction of the measurements
by using FIHT through the following theorem.

Theorem 5:
μ

ncμ0
< 1. (25)

If it further holds that (1 − δ)|d̂| ≤ |dk,i | ≤ (1 + δ)|d̂|,∀k ∈
{1, ..., nc}, i ∈ {1, ..., r} for some δ ∈ (0, 1) and d̂ ∈ C, where
dk,i = r∗

i s1Ck∗li , we have

μ

ncμ0
≤ 1

1 + (nc − 1) (1−δ)2

κ2
L (1+δ)2

, (26)

where κL is the conditional number of P L when nc = 1.
Theorem 5 indicates that the required number of measure-

ments is reduced when collectively processing X . Note that μ0
is independent of the amplitude parameters dk,i’s and depends
only on the separations of the frequencies fi’s in (12). As a
direct corollary of [28, Th. 2], if the separation among frequen-
cies fi’s is at least 1/csn, then μ0 is a constant. In contrast, μ
depends on both dk,i’s and fi’s. (25) shows that μ is always
less than ncμ0 . Moreover, in the special case that dk,i’s are all
in a small range, μ/(ncμ0) can be reduced to approximately
κ2

L/nc from (26). With well separated frequencies, the maxi-
mum and minimum singular values of P L when nc = 1 are both
proportional to

√
n1 [28]. That implies κL is a constant. Then,

κ2
L/nc is in the order of 1/nc for large nc , and we have μ/μ0 =

O(1/nc). Combining these results with the arguments before
Theorem 3, one can see that the required number of measure-
ments is significantly reduced by collective processing.

VI. NUMERICAL RESULTS

We test the numerical performance of AM-FIHT and RAM-
FIHT. The simulations are implemented in MATLAB on a desk-
top with 3.4 GHz Intel Core i7 and 16 GB memory. In all the

Fig. 1. Three modes of missing data.

Fig. 2. Phase transition under Mode 1.

experiments, we delete some data points in the datasets and test
the recovery performance. We consider three modes of missing
data patterns, as illustrated in Fig. 1. Given a data loss percent-
age,

� Mode 1: Data losses occur randomly and independently
across time and channels.

� Mode 2: At randomly selected time instants, the data points
in all channels are lost simultaneously.

� Mode 3: Starting from a randomly selected time instant,
in half of the channels that are randomly selected, the data
points are lost simultaneously and consecutively lost.

A. Numerical Experiments on Synthetic Data

We test the recovery performance on synthetic spectrally
sparse signals. Each row of matrix X ∈ Cnc ×n is a weighted
sum of r sinusoids as shown in (12). Each fi is randomly se-
lected from (0, 1). τi is 0 for all i. The complex coefficient
dk,i has its angle randomly selected from (0, 2π) and its magni-
tude chosen as 1 + 10ak , i , where ak,i is randomly selected from
(0, 1).

1) (R)AM-FIHT With Noiseless Measurements: We first
compare the performance of AM-FIHT and RAM-FIHT with
noiseless measurements. For RAM-FIHT, instead of dividing
the observation set into disjoint subsets, we use the entire ob-
servation set in every iteration. Hence, RAM-FIHT differs from
AM-FIHT in the trimming step, and the thresholding is set as the
ground truth μ throughout this section. AM-FIHT is tested with
both β = 0 and β = (1 − p)2/5, while only β = (1 − p)2/5 is
tested on RAM-FIHT. An algorithm terminates if

‖PΩ̂ (X l − X l−1)‖F /‖PΩ̂ (X l−1)‖F ≤ 10−6 (27)

is satisfied before reaching the maximum iteration number,
which is set as 300 here.

Figs. 2–4 show the recovery phase transitions of AM-FIHT
and RAM-FIHT with missing data patterns following different
modes. n = 300, n1 = 150, and nc = 30. The x-axis is the
fraction of observations p = m

nc n . The y-axis is the rank r. For
each fixed p and r, we generate 100 independent realizations of
synthetic data matrices and data erasures. We say the recovery
is successful in a test case if

‖PΩ̂ c (X l − X)‖F /‖PΩ̂ c (X)‖F < 10−3 (28)
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Fig. 3. Phase transition under Mode 2.

Fig. 4. Phase transition under Mode 3.

holds when the algorithm terminates after l-th iteration, and Ω̂c

is the complement of Ω̂. A white block corresponds to 100%
success, and a black one means failures in all 100 tests.

Auxiliary solid lines (red for AM-FIHT with β = 0, blue for
AM-FIHT with β > 0, and magenta for RAM-FIHT) are added
in Figs. 2–4 to highlight the phase transition. In the subfig-
ures for RAM-FIHT, the phase transition curves for AM-FIHT
are repeated in dotted curves to compare. Both AM-FIHT and
RAM-FIHT with β > 0 preform very similarly, as the blue dot-
ted line and the magenta solid line coincide in all three modes.

The phase transition threshold of β > 0 is higher than that
of β = 0 for all the modes. The recovery improvement by the
heavy-ball step can be intuitively explained as follows. Note
that Theorem 2 shows that the heavy ball can speed up the con-
vergence by reducing q(0) to q(β). With a certain percentage of
data losses, it might hold that q(β) < 1 < q(0), which indicates
that the iterates with β > 0 are still convergent, while those with
β = 0 may be divergent.

One can see from the phase transition lines that the required
ratio of observations is approximately linear in r when other
parameters are fixed. Note that the degree of freedom of the
signal is Θ(ncr). Although our bound of the required number
of measurements O(r2 log n) in Theorem 3 is not order-wise
optimal due to the artefacts of the proof, the required number of
measurements in numerical experiments is approximately linear
in the degree of freedom.

2) Comparison With Existing Algorithms: We next study the
recovery performance with both noiseless and noisy measure-
ments. Here, rank r is fixed as 15, and n = 600, n1 = 300, nc =
20. All the other setups remain the same. We compare our meth-
ods with FIHT [7] and Singular Value Thresholding (SVT) [6].
Since FIHT recovers the missing points in a single channel,
we convert each row of X to a Hankel matrix with the size
of 300 × 301 and apply FIHT separately. SVT solves the con-
vex NNM problem approximately, and the algorithm is applied
on the original observation matrix and the constructed Hankel
matrix, respectively. The relative recovery error is calculated as
‖PΩ̂ c (X l − X)‖F /‖PΩ̂ c (X)‖F .

Fig. 5 compares the relative recovery error of convergent tests
by different methods with noiseless measurements and different
data loss patterns. (R)AM-FIHT with a nonzero β performs the

Fig. 5. Performance comparison of recovery methods in noiseless setting.

Fig. 6. Running time comparison in Mode 1.

Fig. 7. Performance comparison of recovery methods in noisy setting under
50% data loss in modes 1, 2 and 20% data loss in mode 3.

best among all the methods. As the original data matrix is not
low-rank, SVT fails in all cases. When applied to the constructed
Hankel matrix, SVT exhibits better performance, however, the
recovery errors are still much larger compared with (R)AM-
FIHT. SVT also needs the much longer running time, as shown
in Fig. 6. To achieve the error bound of 10−5 , SVT requires
around 100 iterations at a time cost of 100 seconds, while AM-
FIHT with a nonzero β only takes less than 12 seconds to obtain
an error bound of 10−7 . With 65% data loss in Mode 1, 13.3%
tests of FIHT diverge. In contrast, all tests of AM-FIHT are
convergent, even in the case with 75% data loss. A nonzero β
also increases the percentage of convergent tests. With 80% of
data loss, only 76.7% tests of AM-FIHT with β = 0 converge,
while all the tests of AM-FIHT with β > 0 are convergent.
Moreover, AM-FIHT performs much better than FIHT and SVT
in Mode 3.

When measurements are noisy, every entry of N is indepen-
dently drawn from Gaussian N (0, σ2), where σ is the standard
deviation. Fig. 7 shows the relative recovery error of conver-
gent tests against the relative noise level σ/Ex , where Ex is the
average energy of X calculated as Ex = ||X||F /

√
ncn. The

data loss percentage is fixed as 50% in modes 1, 2 and 20% for
mode 3, respectively. In all three modes, AM-FIHT and RAM-
FIHT perform similarly and achieve the smallest error among
all the methods. The relative recovery error is proportional to
the relative noise level, with a ratio between 0.3 to 0.4. FIHT is
sightly worse than these two methods in modes 1 and 2, but its
performance degrades significantly in mode 3. SVT has a better
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Fig. 8. The measured voltage phasors of 11 channels.

Fig. 9. The approximation errors of the data block and the Hankel matrices.

Fig. 10. Percentage of convergent trials of recovery algorithms.

Fig. 11. Performance comparison of recovery algorithms.

performance when applied on the Hankel matrix instead of the
data matrix, but it is still worse than (R)AM-FIHT.

B. Numerical Experiments on Actual PMU Data

The low-rank property of the Hankel PMU data matrix is
verified on a recorded PMU dataset in Central New York [18]. 11
voltage phasors are measured at a rate of 30 samples per second.
Fig. 8 shows the recorded voltage magnitudes and angles of a 10-
second dataset that contains a disturbance at 2.3 s. Fig. 9 shows
the approximation errors of X and HX by rank-r matrices
with varying n1 and r. The approximation error of X with the
rank-r matrix Qr (X) is defined as ‖X −Qr (X)‖F /‖X‖F ,
and likewise for HX . One can see from Fig. 9 that all these
data matrices can be approximated by rank-8 matrices with
negligible errors.

We set n1 = 8, r = 8 and test both β = 0 and β = (1 − p)/5
in the simulation. Fig. 10 shows the percentage of convergent
runs out of 100 runs for different algorithms. Fig. 11 compares

the average recovery error of convergent runs. Overall, AM-
FIHT with β > 0 achieves a small recovery error, tolerates a
high data loss rate, and does not require much computation.
For example, when the data loss rate is 55% in Mode 2, AM-
FIHT with β = (1 − p)/5 converges every time. The number
of iterations is 47.2 on average, and the running time is 0.62
seconds. It takes 4.34 seconds to run 400 iterations of SVT
on Hankel matrices. AM-FIHT with β = 0 diverges for 95%
of the runs. FIHT diverges completely. Similar result to Fig. 6
about the average iteration numbers of AM-FIHT with β = 0
and β > 0 from respective successful trials is observed as well,
thus a small positive β helps improve the convergence rate.

There are minor differences between AM-FIHT (β > 0) and
RAM-FIHT (β > 0) in mode 1. RAM-FIHT tolerates a slightly
higher data loss percentage, while its average recovery error of
convergent runs is slightly larger than that of AM-FIHT. AM-
FIHT and RAM-FIHT perform similarly in modes 2 and 3.

VII. CONCLUSION AND DISCUSSIONS

This paper characterizes the intrinsic low-dimensional struc-
tures of correlated time series through multi-channel low-rank
Hankel matrices. Two iterative hard thresholding algorithms
with linear convergence rates are proposed to solve the non-
convex missing data recovery problem. Our bound of the re-
quired number of observed entries for successful recovery is
O(r2 log2 n), significantly smaller than O(rn log2 n) by con-
ventional low-rank matrix completion methods. Our bound is
slightly larger than the degree of the freedom Θ(ncr), and we
suspect that the bound can be improved with better proof tech-
niques. The convergence rate is proved to be accelerated further
by adding a heavy-ball step, which also increases the tolerable
missing data percentage numerically.

One motivating application of our methods is power system
synchrophasor data recovery. Other applications include array
signal processing and MRI image recovery. This paper provides
the first analytical characterization of multi-channel Hankel ma-
trix completion methods, while existing works mostly focused
on single-channel Hankel matrix recovery. One future direction
is to study data recovery from both data losses and corruptions,
where partial measurements contain significant errors. The bad
data should be first located and removed before recovering the
missing points.

APPENDIX

A. Notations and Assumptions

We first introduce notations used in the proof. For matrix
Z1 ∈ Cnc ×n , we define the Block Hankel Operator H̃ as

H̃Z1 = [HZ1 HZ1 · · · HZ1 ] ∈ Cnc n1 ×nc n2 .

H̃Z1 is an nc -block Hankel matrix. H̃∗ is the adjoint opera-
tor of H̃. For any matrix Z2 ∈ Cnc n1 ×nc n2 , (H̃∗Z2) ∈ Cnc ×n

satisfies

〈H̃∗Z2 ,eke∗
t 〉 =

nc −1∑
l=0

∑
k1 +k2 =t+1

〈Z,e(k1 −1)nc +ke∗
k2 + ln2

〉.
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Define D̃2 := H̃∗H̃, an operator from an nc × n matrix Z to an
nc × n matrix with

D̃2Z =
n∑

t=1

nc∑
k=1

ncwt〈Z,eke∗
t 〉eke∗

t ,

where wt is defined in (15). Then the Moore-Penrose pseu-
doinverse of H̃, denoted as H̃†, equals to D̃−2H̃∗. Further, we
define G̃ = H̃D̃−1 , then the adjoint operator of G̃ is defined as
G̃∗ = D̃−1H̃∗. Additionally,

Y := D̃X and Y l := D̃X l . (29)

For any matrix Z ∈ Cnc ×n , one can check that ‖H̃X‖ =√
nc ‖HX‖ and ‖H̃X‖F =

√
nc ‖HX‖F . Immediately, H̃X

and HX share the same conditional number κ. Moreover, it is
clear that G̃ is a unit operator as G̃∗G̃ = I, and H̃X = G̃Y .

The following proofs will be established on Block Hankel
Operator H̃. Consider AM-FIHT in terms of H̃, the initialization
can be written as L̃0 = p−1Qr (H̃PΩ(X)). Further, the major
steps can be represented as

W̃ l = PS̃l
H̃(X l + p−1Gl + βΔW̃ ), L̃l+1 = Qr (W̃ l),

where S̃l is the tangent subspace at L̃l . The resulting X̃ l re-
turned by AM-FIHT in terms of H̃ is given as H̃†L̃l .

Moreover, by replacing H with H̃, AM-FIHT returns the
same result as X̃ l = X l . In other words, we can show that

L̃l = [Ll Ll · · · Ll ],∀l ≥ 0. (30)

To see this, it is clear that (30) holds for l = 0 from the def-
inition of L̃0 . Then suppose (30) holds when l = k. Immedi-
ately, we have W̃ k = [W k W k · · · W k ]. Let W k =∑min(nc n1 ,n2 )

i=1 σiuiv
∗
i be the SVD with σ1 ≥ σ2 ≥ · · · ≥

σmin(nc n1 ,n2 ) . Then for l = k + 1,

L̃k+1 = Qr (W̃ k ) =
r∑

i=1

√
ncσiui

1√
nc

[v∗
i · · · v∗

i ]

=
r∑

i=1

[σiuiv
∗
i · · · σiuiv

∗
i ].

= [Lk+1 Lk+1 · · · Lk+1 ].

Hence, the connection between X l and L̃l can be given as

‖X l − X‖F = ‖D̃−1(Y l − Y )‖F ≤ 1√
nc

‖Y l − Y ‖F

=
1√
nc

‖G̃∗(L̃l − G̃Y )‖F ≤ 1√
nc

‖L̃l − G̃Y ‖F . (31)

For RAM-FIHT, similarly define an nc -block matrix L̃
′
l =[

L′
l L′

l · · · L′
l

]
. From the discussion above, one can ver-

ify that (30) also holds in RAM-FIHT. Then the SVD of L̃l in
(30) is L̃l = Ũ lΣ̃lṼ

∗
l = U l

(√
ncΣl

)( 1√
nc

[V ∗
l · · ·V ∗

l ]
)
. Then

Ãl and B̃l are defined as

(Ãl)i∗ =
(Ũ l)i∗∥∥∥(Ũ l)i∗

∥∥∥
min

{∥∥∥(Ũ l)i∗
∥∥∥ ,

√
μr

ncn1

}
, (32)

(B̃l)i∗ =
(Ṽ l)i∗∥∥∥(Ṽ l)i∗

∥∥∥
min

{∥∥∥(Ṽ l)i∗
∥∥∥ ,

√
μr

ncn2

}
. (33)

Sampling model with replacement: As shown in [42], due
to the duplications, the number of observed entries in a sam-
pling model with replacement is less than or equal to that in
a sampling model without replacement. Thus, it is sufficient
to study the sampling model with replacement. To distinguish
Ω̂ in (10), which represents the sampling set without replace-
ment, let Ω be m unions of indices sampled uniformly from set
{1, 2, . . . , nc} × {1, 2, . . . , n} with replacement, and

PΩ(Z1) =
m∑

a=1

〈Z1 ,eka
e∗

ta
〉eka

e∗
ta
, (34)

for any Z1 ∈ Cnc ×n . By changing the sampling model, several
critical lemmas can be derived from Bernstein Inequality.

Lemma 1 ([44], Th. 1.6): Consider a finite sequence {Zk}
of independent, random matrices with dimensions d1 × d2 . As-
sume that such random matrix satisfies

E(Zk ) = 0 and ‖Zk‖ ≤ R almost surely.

Define

σ2 := max

{∥∥∥∥∥
∑

k

E(ZkZ∗
k )

∥∥∥∥∥ ,

∥∥∥∥∥
∑

k

E(Z∗
kZk )

∥∥∥∥∥

}
.

Then for all t ≥ 0,

P

{∥∥∥∥∥
∑

k

Zk

∥∥∥∥∥ ≥ t

}
≤ (d1 + d2) exp

( −t2/2
σ2 + Rt/3

)
.

Suppose that t ≤ σ2/R, then the right hand side can be re-
leased as (d1 + d2) exp(− 3

8 t2/σ2). Such kind of manipulation
will be adopted in several proofs.

Note that the set of matrices{
H̃k.t |H̃k,t =

1√
ncwt

H̃(eke∗
t ), 1 ≤ k ≤ nc, 1 ≤ t ≤ n

}

forms an orthonormal basis of the nc -block Hankel matrix,
where H̃X =

∑nc

k=1
∑n

t=1〈H̃k,t , H̃X〉H̃k,t . Then, for all
(ka , ta) ∈ Ω, PΩ is also used as the operator

PΩ(Z2) =
m∑

a=1

〈Z2 , H̃ka ,ta
〉H̃ka ,ta

,

for any Z2 ∈ Cnc n1 ×nc n2 . In spite of abuse of notation, the
meaning of PΩ is clear from context. By such definition,
PΩ(H̃Z1) = H̃PΩ(Z1) for any Z1 ∈ Cn×nc . Additionally,
H̃k,t only has ncwt nonzero entries of magnitude 1/

√
ncwt ,

so ‖H̃k,t‖F = 1. The following lemma can be established di-
rectly from the definition of incoherence.

Lemma 2: Let H̃X = ŨΣ̃Ṽ
∗

be the SVD of H̃X . Assume
H̃X is μ-incoherent. Then∥∥∥e∗

k1
Ũ
∥∥∥

2
≤ μcsr

ncn
,

∥∥∥e∗
k2

Ṽ
∥∥∥

2
≤ μcsr

ncn
, (35)

∥∥∥PŨ (H̃k,t)
∥∥∥

2

F
≤ μcsr

ncn
,

∥∥∥PṼ (H̃k,t)
∥∥∥

2

F
≤ μcsr

ncn
. (36)

where ek1 ,ek2 are the coordinate unit vectors.
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B. Supporting Lemmas for Theorem 1

We first present some supporting lemmas to prove Theorem 1.
Lemma 3 shows that the maximum number of repetitions is
bounded by O(log n) with high probability in uniform sampling.
Lemma 4 derives the properties of p−1PS̃G̃PΩ G̃∗PS̃ , and the

random operator can be close enough to its mean PS̃G̃G̃∗PS̃
with a significant large amount of observed entries. Lemma 5
connects the angle of two subspaces, represented as ‖PS̃l

−
PS̃‖, with ‖L̃l − G̃Y ‖F , and shows the angle decreases as Ll

approaches to the ground truth. Lemma 6 indicates the distance
between the initial point and ground truth. Lemmas 4 and 6 are
built upon [7, Lemmas 5 and 2], respectively, by extending from
single-channel signals to multi-channel signals. When nc = 1,
Lemmas 4 and 6 are reduced to corresponding lemmas in [7].

Lemma 3: Under sampling with replacement model, the
maximum number of repetitions of any entry in Ω is less than
3 log(n) with probability at least 1 − ncn

−2 for n ≥ 12.
Lemma 4: Let S̃ be the tangent subspace of H̃X . Assume

H̃X is μ-incoherent. Then with m ≥ 32μcsr log(n),

∥∥∥PS̃G̃G̃∗PS̃ − p−1PS̃G̃PΩ G̃∗PS̃
∥∥∥ ≤

√
32μcsr log(n)

m

holds with probability at least 1 − ncn
−2 .

Lemma 5 ([46], Lemma 4.1): Let Z l be a rank-r matrix and
Sl be the tangent subspace of Z l . If Z is also a rank-r matrix
and its tangent subspace is denoted as S, then

‖(I − PSl
)(Z l − Z)‖F ≤ ‖Z l − Z‖2

F

σmin(Z)
, (37)

‖PSl
− PS‖ ≤ 2 ‖Z l − Z‖F

σmin(Z)
. (38)

Lemma 6: Assume H̃X is μ-incoherent. With the initial
point L̃0 = Qr (p−1H̃PΩ(X)), if m ≥ 16μcsr log(n), we have

∥∥∥L̃0 − H̃X
∥∥∥ ≤

√
64μcsr log(n)

m

∥∥∥H̃X
∥∥∥

holds with probability at least 1 − ncn
−2 .

C. Proof of Theorem 1

The proof of Theorem 1 is extended from that of [7, Th. 3]
with some modifications. The majority of the efforts are de-
voted to the “Inductive Step” to build the connections between
W l−1 and W l through (43). In (43), the major issue is to bound
I1 , I2 , I3 and I4 , and (44) and (47) provide critical steps in
bounding these items. This inductive step is built upon a simi-
lar analysis for Ll’s in [7]. Here we study W l’s instead of Ll’s
since the analysis of Theorem 2 is based on analyzing W l’s. Al-
though Lemma 6 provides the theoretical bound for L0 directly,
a similar result for W 0 is lacking. Thus, some efforts to analyze
W 0 is needed in the “Base Case” part. (24) in Theorem 1 is
obtained from (51), which provides the theoretical bound for the
required number of observations to ensure successful recovery.
We include detailed steps as follows for the completeness of the
proof.

Proof of Theorem 1 As L̃l+1 = Qr (W̃ l), L̃l+1 is the best
rank-r approximation to W̃ l . Then we have

‖L̃l+1 − G̃Y ‖F ≤ ‖W̃ l − L̃l+1‖F + ‖W̃ l − G̃Y ‖F

≤ 2‖W̃ l − G̃Y ‖F .
(39)

Therefore, it is sufficient to bound ‖W̃ l − G̃Y ‖F . Lemma 3
suggests that with probability at least 1 − ncn

−2 ,

‖PΩ‖ ≤ 3 log(n) (40)

holds. Lemma 4 suggests as long as m ≥ 32ε−2
0 μcsr log(n),

∥∥∥PS̃G̃G̃∗PS̃ − p−1PS̃G̃PΩ G̃∗PS̃
∥∥∥ ≤ ε0 (41)

holds with probability at least 1 − ncn
−2 .

Now we will show that the following inequality holds by
mathematical induction,

‖W̃ k − G̃Y ‖F

σmin(G̃Y )
≤ p1/2ε0

12 log(n)(1 + ε0)
. (42)

Inductive Step: Suppose (42) holds for k = l − 1. Recall that

W̃ l = PS̃l
H̃(X l + p−1PΩ(X − X l))

= PS̃l
G̃(Y l + p−1PΩ(Y − Y l)).

Then, for all l ≥ 1, we have
∥∥∥W̃ l − G̃Y

∥∥∥
F

=
∥∥∥PS̃l

G̃(Y l + p−1PΩ(Y − Y l) − G̃Y
∥∥∥

F

=
∥∥∥PS̃l

G̃Y − G̃Y + (PS̃l
G̃ − p−1PS̃l

G̃PΩ)(Y l − Y )
∥∥∥

F

(a)
≤
∥∥∥(I − PS̃l

)(L̃l − G̃Y )
∥∥∥

F

+
∥∥∥(PS̃l

G̃G̃∗ − p−1PS̃l
G̃PΩ G̃∗)(PS̃l

W̃ l−1 − G̃Y )
∥∥∥

F

≤
∥∥∥(I−PS̃l

)(L̃l −G̃Y )
∥∥∥

F
+
∥∥∥PS̃l

G̃G̃∗(I−PS̃l
)(L̃l −G̃Y)

∥∥∥
F

+
∥∥∥(PS̃l

G̃G̃∗PS̃l
− p−1PS̃l

G̃PΩ G̃∗PS̃l
)(W̃ l−1 − G̃Y )

∥∥∥
F

+ p−1
∥∥∥PS̃l

G̃PΩ G̃∗(I − PS̃l
)(L̃l − G̃Y )

∥∥∥
F

:= I1 + I2 + I3 + I4 , (43)

where (a) holds since L̃l = PS̃l
W̃ l−1 . By applying (37),

I1 + I2 + I4

≤ 2‖L̃l − G̃Y ‖2
F

σmin(G̃Y )
+ p−1

∥∥∥PΩ G̃∗PS̃l

∥∥∥ ‖L̃l − G̃Y ‖2
F

σmin(G̃Y )

≤ 8‖W̃ l−1 − G̃Y ‖2
F

σmin(G̃Y )
+ 4p−1

∥∥∥PΩ G̃∗PS̃l

∥∥∥ ‖W̃ l−1 − G̃Y ‖2
F

σmin(G̃Y )
.

(44)
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Next, we will bound ‖PΩ G̃∗PS̃l
‖. For any Z ∈ Cnc n1 ×nc n2 ,

‖PΩ G̃∗PS̃(Z)‖2 = 〈PΩ G̃∗PS̃(Z),PΩ G̃∗PS̃(Z)〉
(b)
≤ 3 log(n)〈G̃∗PS̃(Z),PΩ G̃∗PS̃(Z)〉
= 3 log(n)〈Z,PS̃G̃PΩ G̃∗PS̃(Z)〉
(c)
≤ 3 log(n)(1 + ε0)p ‖Z‖2

F . (45)

where (b) holds due to (40), and (c) holds due to (41). Hence,

∥∥∥PS̃G̃PΩ

∥∥∥ =
∥∥∥PΩ G̃∗PS̃

∥∥∥ ≤
√

3 log(n)(1 + ε0)p,

and
∥∥∥PΩ G̃∗PS̃l

∥∥∥ ≤
∥∥∥PΩ G̃∗(PS̃l

− PS̃)
∥∥∥+

∥∥∥PΩ G̃∗PS̃
∥∥∥

(a)
≤ 3 log(n)

2‖L̃l − G̃Y ‖F

σmin(G̃Y )
+
∥∥∥PΩ G̃∗PS̃

∥∥∥

(b)
≤ 3 log(n)

p1/2ε0

3 log(n)(1 + ε0)
+
√

3 log(n)(1 + ε0)p

≤ 3 log(n)(1 + ε0)p1/2 , (46)

where (a) holds due to (38) and (40), and (b) holds due to (39)
and the inductive hypothesis.

Hence, I1 + I2 + I4 ≤ 2ε0‖W̃ l−1 − G̃Y ‖F . Moreover,

∥∥∥PS̃l
G̃G̃∗PS̃l

− p−1PS̃l
G̃PΩ G̃∗PS̃l

∥∥∥

≤
∥∥∥PS̃G̃G̃∗PS̃ − p−1PS̃G̃PΩ G̃∗PS̃

∥∥∥+
∥∥∥(PS̃ − PS̃l

)G̃G̃∗PS̃l

∥∥∥

+
∥∥∥PS̃G̃G̃∗(PS̃ − PS̃l

)
∥∥∥+

∥∥∥p−1(PS̃ − PS̃l
)G̃PΩ G̃∗PS̃l

∥∥∥

+
∥∥∥p−1PS̃G̃PΩ G̃∗(PS̃ − PS̃l

)
∥∥∥

(c)
≤ ε0 +

2‖L̃l − G̃Y ‖F

σmin(G̃Y )

(
2+p−1‖PΩ G̃∗PS̃l

‖+p−1‖PS̃G̃PΩ‖
)

(d)
≤ 4ε0 . (47)

where (c) comes from Lemma 5, and (d) comes from (42) and
(46). Then, I3 can be bounded as

I3 ≤ 4ε0‖W̃ l−1 − G̃Y ‖F . (48)

By putting pieces together, we have

‖W̃ l − G̃Y ‖F ≤ ν‖W̃ l−1 − G̃Y ‖F . (49)

Hence, (42) still holds for k = l.
Base Case: Let us assume

‖L̃0 − G̃Y ‖F ≤ p1/2ε0

6 log(n)(1 + ε0)
. (50)

Then, similar to I1 + I2 + I3 + I4 in (43), we have∥∥∥W̃ 0 − G̃Y
∥∥∥

F
=
∥∥∥PS̃0

G̃(Y 0 + p−1PΩ(Y − Y 0)) − G̃Y
∥∥∥

F

≤
∥∥∥(I − PS̃0

)(L̃0 − G̃Y )
∥∥∥

F

+
∥∥∥PS̃0

G̃G̃∗(I − PS̃0
)(L̃0 − G̃Y )

∥∥∥
F

+
∥∥∥(PS̃0

G̃G̃∗PS̃0
− p−1PS̃0

G̃PΩ G̃∗PS̃0
)(L̃0 − G̃Y )

∥∥∥
F

+ p−1
∥∥∥PS̃0

G̃PΩ G̃∗(I − PS̃0
)(L̃0 − G̃Y )

∥∥∥
F

≤ 5ε0‖L̃0 − G̃Y ‖F .

Since ε0 ∈ (0, 1/10), we have

‖W̃ 0 − G̃Y ‖F ≤ 1
2
‖L̃0 − G̃Y ‖F ≤ p1/2ε0

12 log(n)(1 + ε0)
,

which completes the induction part.
Then the only thing is to check the assumption (50). Using

Lemma 6 and ‖L̃0 − G̃Y ‖F ≤ √
2r‖L̃0 − G̃Y ‖, with proba-

bility at least 1 − ncn
−2 ,

‖L̃0 − G̃Y ‖F

σmin(G̃Y )
≤

√
2r‖L̃0 − G̃Y ‖
σmin(G̃Y )

= κ

√
128μcsr2 log(n)

m
.

Therefore, to guarantee (50), we need

κ

√
128μcsr2 log(n)

m
≤ p1/2ε0

6 log(n)(1 + ε0)
, (51)

That is m ≥ C1(1 + ε0)ε−1
0 n

1/2
c μ1/2c

1/2
s κrn1/2 log3/2(n)

with C1 = 48
√

2.
Hence, with probability at least 1 − (2l + 1)ncn

−2 , from
(49),

‖Y l − Y ‖F = ‖G̃∗(L̃l − G̃Y )‖F ≤ ‖L̃l − G̃Y ‖F

≤ 2‖W̃ l−1 − G̃Y ‖F ≤ 2νl−1‖W̃ 0 − G̃Y ‖F

≤ νl−1‖L̃0 − G̃Y ‖F ,
(52)

where Y l = G̃∗L̃l , G̃∗G̃ = I and ‖G̃∗‖ ≤ 1.

D. Proof of Theorem 2

First, we extend the eigenvalues and eigenvectors of linear
operators on vector spaces to the eigenvalues and eigenmatrices
of linear operators on matrix spaces, defined as follows.

Definition 2: Let A denote a linear operator from Cl1 ×l2 to
Cl1 ×l2 , for any matrix M in the space and M �= 0, if AM =
λM holds, then M is one eigenmatrix of operator A, and λ is
the corresponding eigenvalue.

LetL denote the following linear operator on the matrix space
Cnc n1 ×nc n2 ,

L = PS̃G̃G̃∗PS̃ − p−1PS̃G̃PΩ G̃∗PS̃ .

We first introduce Lemmas 7–9 that are useful in the proof of
Theorem 2.

Lemma 7: Suppose that for any ε > 0, there always exists an
integer sε such that for any integer k ≥ 0, the iterates W̃ sε +k

generated by AM-FIHT satisfy ‖W̃ sε +k − G̃Y ‖F ≤ ε. Then
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with any l > sε + 1, the updated rule can be denoted as
[

W̃ l − G̃Y

W̃ l−1 − G̃Y

]

=

[
L(W̃ l−1 − G̃Y ) + βPS̃(W̃ l−1 − W̃ l−2)

W̃ l−1 − G̃Y

]
+ Z̃ l−1 ,

where
∥∥∥Z̃ l−1

∥∥∥
F

= o

(∥∥∥∥∥

[
W̃ l−1 − G̃Y

W̃ l−2 − G̃Y

]∥∥∥∥∥
F

)
.

Lemma 8: All the eigenvalues of operator L are real num-
bers.

Lemma 9 ([40], Lemma 2.1): Let A be a linear operator
from Cl1 ×l2 to Cl1 ×l2 , and let λ1 , . . . , λn be its eigenvalues,
let ρ(A) = max1≤i≤n |λi |, if ρ(A) < 1, then there exists some
constant c(δ) such that ‖Ak‖ ≤ c(δ)(ρ(A) + δ)k holds for all
integers k, where 0 < δ < 1 − ρ(A).

Proof of Theorem 2: First, we claim that AM-FIHT is still
convergent with a small β ∈ (0, 1). Based on the proof of
Theorem 1,

‖W̃ l − G̃Y ‖F ≤ ν‖W̃ l−1 − G̃Y ‖F ,

where ν = 6ε0 , 0 < ε0 < 1/10. A loose bound from a direct
derivation with β �= 0 is

‖W̃ l − G̃Y ‖F ≤ (ν + β)‖W̃ l−1 − G̃Y ‖F + β‖W̃ l−2

− G̃Y ‖F .

Thus if ν + 2β < 1, i.e., β ∈ (0, 1
5 ), the iteration is still con-

vergent. Thus for any ε > 0, we can always find such an l that
‖W̃ l−2+k − G̃Y ‖F ≤ ε,∀k ≥ 0. Then following Lemma 7, if
we ignore Z̃ l−1 , then

W̃ l − G̃Y = L(W̃ l−1 − G̃Y ) + βPS̃(W̃ l−1 − W̃ l−2).

Thus PS̃(W̃ l − G̃Y ) = W̃ l − G̃Y . With PS̃(G̃Y ) = G̃Y , we

have PS̃(W̃ l) = W̃ l . The update rule of AM-FIHT can be
further simplified as
[

W̃ l − G̃Y

W̃ l−1 − G̃Y

]
=

[
L(W̃ l−1 − G̃Y ) + β(W̃ l−1 − W̃ l−2)

W̃ l−1 − G̃Y

]

:= L̃
[

W̃ l−1 − G̃Y

W̃ l−2 − G̃Y

]
.

Following Lemma 4, we have ‖L‖ < 1, if m > 32μcsr log(n).
Based on the definitions of ρ(L) and ‖L‖, we have ρ(L) ≤
‖L‖ < 1. Our aim is to prove ρ(L̃) < ρ(L). Let λ denote
one nonzero eigenvalue of L̃, the corresponding eigenmatrix
is [M 1

M 2
], then

L̃
[

M 1

M 2

]
=
[LM 1 + β(M 1 − M 2)

M 1

]
= λ

[
M 1

M 2

]
,

we have M 1 = λM 2 ,L(M 1) + βM 1 − βM 2 = λM 1 .
Therefore, λL(M 2) + λβM 2 − βM 2 = λ2M 2 . With λ �= 0,

L(M 2) = (λ − β + β/λ)M 2 := ηiM 2 ,

thus M 2 is an eigenmatrix of operatorL, with the corresponding
eigenvalue as ηi . Lemma 8 shows ηi ∈ R, then we have

λ2 − ηiλ − βλ + β = 0,

λi1 =
ηi + β +

√
(ηi + β)2 − 4β

2
,

λi2 =
ηi + β −√(ηi + β)2 − 4β

2
.

Here we analyze in two cases:
1) for any ηi that satisfies (ηi + β)2 − 4β ≤ 0, the modulus

|λi1 | = |λi2 | =
√

β.
2) for any ηi that satisfies (ηi + β)2 − 4β > 0, ηi cannot be

zero for any β ∈ (0, 1). With ρ(L) = maxi |ηi | < 1, it
holds that ηi < 1. In this case, with β ∈ (0, 1), we have

(ηi + β)2 − 4β = (ηi − β)2 − 4(1 − ηi)β < (ηi − β)2 ,

max{|λi1 |, |λi2 |} =
|ηi + β| +√(ηi + β)2 − 4β

2

<
|ηi + β| + |ηi − β|

2
= max{|ηi |, β} ≤ max{|ηi |,

√
β}.

Combining the two cases, if we choose a positive β that
satisfies β < (maxi{|ηi |})2 = ρ2(L), let

q(0) = ρ(L), q(β) = ρ(L̃), τ = min
{
1/5, ρ2(L)

}
, (53)

then we have q(0) > q(β),∀β ∈ (0, τ).

E. Proof of Theorem 3:

Lemma 10 derives the properties of p̂−1PŜl
G̃PΩ l + 1 G̃∗(PŨ −

PÛ l
), and the random operator can be close enough to its

mean PŜl
G̃G̃∗(PŨ − PÛ l

) with a significant large amount of

observed entries. Lemma 11 illustrates the relation between L̃l

and L̃
′
l and gives the bound on the incoherence of L̃

′
l , which

is obtained after the trimming part (line 5 to 10). Lemmas 10
and 11 are built upon [7, Lemmas 9 and 10] by extending from
single-channel signals to multi-channel signals. Similar to the
proof of Theorem 1, the proof of Theorem 3 is built upon that of
[7, Lemma 3], which is originally proposed as an initialization
strategy. The major steps are devoted to bounding I5 , I6 and I7
in (58), and the corresponding results are presented in (59)–(61).
We include some details for the completeness of this proof.

Lemma 10: Let L̃
′
l = Û lΣ̂lV̂

∗
l and G̃Y = ŨΣ̃Ṽ

∗
be the

SVD of L̃
′
l and G̃Y . Further let Ŝl be the tangent subspace of

L̃
′
l . Assume there exists a constant μ such that

∥∥∥PÛ l
H̃k,t

∥∥∥
2

F
≤ μcsr

ncn
,
∥∥∥PV̂ l

H̃k,t

∥∥∥
2

F
≤ μcsr

ncn
,

and ∥∥∥PŨH̃k,t

∥∥∥
2

F
≤ μcsr

ncn
,
∥∥∥PṼ H̃k,t

∥∥∥
2

F
≤ μcsr

ncn
.

for all 1 ≤ t ≤ n, 1 ≤ k ≤ nc . Let Ωl+1 = {(ka , ta)|a =
1, . . . , m̂} be a set of indices sampled with replacement. If
PΩ l + 1 is independent of Ũ , Ṽ , Û l and V̂ l , then
∥∥∥PŜl

G̃(I − p̂−1PΩ l + 1 )G̃∗(PŨ − PÛ l
)
∥∥∥ ≤

√
160μcsr log(n)

m̂

with probability at least 1 − ncn
−2 , if m̂ ≥ 125

18 μcsr log(n).
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Lemma 11: Let L̃l = Ũ lΣ̃lṼ
∗
l and G̃Y = ŨΣ̃Ṽ

∗
be the

SVD of L̃l and G̃Y . Assume

max
k1

||Ũ k1 ∗||2 ≤ μcsr

ncn
and max

k2
||Ṽ k2 ∗||2 ≤ μcsr

ncn
.

Suppose L̃l and G̃Y are both rank-r matrices satisfying

‖L̃l − G̃Y ‖F ≤ σmin(G̃Y )
10
√

2
.

Then the matrix L̃
′
l = Û lΣ̂lV̂

∗
l , denoting the SVD of L̃

′
l , that

is obtained after trimming in RAM-FIHT satisfies

‖L̃′ − G̃Y ‖F ≤ 8κ‖L̃l − G̃Y ‖F , (54)

max
k1 ,k2

{
‖Û k1 ∗‖2 , ‖V̂ k2 ∗‖2

}
≤ 100μcsr

81ncn
, (55)

where κ denotes the condition number of G̃Y .
Proof of Theorem 3 First, we show the following inequality

holds with high probability by mathematical induction.

‖L̃k − G̃Y ‖F ≤ ε0σmin(G̃Y )
128κ2 . (56)

Inductive Step: Suppose (56) holds when k = l and l ≥ 0. Then
(55) in Lemma 11 holds. Further, we can conclude∥∥∥PÛ l

H̃k,t

∥∥∥
2

F
≤ 100μcsr

81ncn
and

∥∥∥PV̂ l
H̃k,t

∥∥∥
2

F
≤ 100μcsr

81ncn
.

(57)
Recall that Y = D̃X and G̃Y = H̃X. Define Ŷ l = D̃X̂ l .
Since the measurements are noiseless, then M = X and

H̃(X̂ l + p̂−1P̃Ω l + 1 (X−X̂ l)) = G̃(Ŷ l + p̂−1P̃Ω l + 1 (Y − Ŷ l)).
Then,∥∥∥L̃l+1 − G̃Y

∥∥∥
F

≤ 2
∥∥∥PŜl

G̃(Ŷ l + p̂−1PΩ l + 1 (Y − Ŷ l)) − G̃Y
∥∥∥

F

≤ 2
∥∥∥PŜl

G̃Y − G̃Y
∥∥∥

F
+ 2

∥∥∥(PŜl
G̃ − p̂−1PŜl

G̃PΩ l + 1

)

× (Y − Ŷ l)
∥∥∥

F
= 2

∥∥∥(I − PŜl

)G̃Y
∥∥∥

F

+ 2
∥∥∥(PŜl

G̃G̃∗ − p̂−1PŜl
G̃PΩ l + 1 G̃∗)(L̃′

l − G̃Y )
∥∥∥

F

≤ 2
∥∥∥(I − PŜl

)
(L̃

′
l − G̃Y )

∥∥∥
F

+ 2
∥∥∥(PŜl

G̃G̃∗PŜl
− p̂−1PŜl

G̃PΩ l + 1 G̃∗PŜl

)
(L̃

′
l − G̃Y )

∥∥∥
F

+ 2
∥∥∥PŜl

G̃(I − p̂−1PΩ l + 1 )G̃∗(I − PŜl
)(L̃

′
l − G̃Y )

∥∥∥
F

:= I5 + I6 + I7 . (58)
where the first inequality comes from (39).

With (54) and (56), I5 can be bounded as

I5 ≤ 2‖L̃′
l − G̃Y ‖2

F

σmin(G̃Y )
≤ ε0‖L̃l − G̃Y ‖F , (59)

As for the item I6 , Lemma 4 along with (54) suggests

I6 ≤ 2

√
3200μcsr log(n)

81m̂
‖L̃′

l − G̃Y ‖F

≤ 16κ

√
3200μcsr log(n)

81m̂
‖L̃l − G̃Y ‖F (60)

with probability at least 1 − ncn
−2 . To bound I7 ,(

I − PŜl

)(
L̃

′
l − G̃Y

)
=
(
I − Û lÛ

∗
l

)
(−G̃Y )

(
I − V̂ lV̂

∗
l

)

=
(
ŨŨ

∗ − Û lÛ
∗
l

)(
L̃

′
l − G̃Y

)(
I − V̂ lV̂

∗
l

)

=
(
PŨ − PÛ l

)
(I − PṼ )

(
L̃

′
l − G̃Y

)
.

Hence, by Lemma 10, with probability at least 1 − ncn
−2 ,

I7 = 2
∥∥∥PŜl

G̃(I − p̂−1PΩ l + 1 )G̃∗
(
PŨ − PÛ l

)

× (I − PṼ )
(
L̃

′
l − G̃Y

)∥∥∥
F

≤ 2
∥∥∥PŜl

G̃(I − p̂−1PΩ l + 1 )G̃∗
(
PŨ − PÛ l

)∥∥∥
∥∥∥L̃′

l − G̃Y
∥∥∥

F

≤ 16κ

√
16000μcsr log(n)

81m̂

∥∥∥L̃′
l − G̃Y

∥∥∥
F

. (61)

Therefore, if m̂ ≥ C4ε
−2
0 μcsκ

2r log(n) for some constant C4 ,

I6 +I7 ≤ 326κ

√
μcsr log(n)

m̂
‖L̃l −G̃Y ‖F ≤ ε0‖L̃l −G̃Y ‖F .

Putting pieces together gives

‖L̃l+1 − G̃Y ‖F ≤ 2ε0‖L̃l − G̃Y ‖F (62)

with probability at least 1 − 2ncn
−2 . Hence, (56) also holds

when k = l + 1.
Base Case: Since L̃0 = Qr (p̂−1H̃PΩ0 (X)), we can follow

the same idea in the proof of base case in Theorem 1. Thus,
when k = 0, (56) is valid with probability at least 1 − ncn

−2

provided m̂ ≥ C5ε
−2
0 μcsκ

6r2 log(n) for some constant C5 .
Let C2 = max{C4 , C5}. If m̂ ≥ C2ε

−2
0 μcsκ

6r2 log(n), then
for each l ≥ 0, we have

‖L̃l+1 − G̃Y ‖F ≤ 2ε0‖L̃l − G̃Y ‖F .

with probability at least 1 − 2ncn
−2 . Directly the following

inequality is obtained with probability 1 − (2L + 1)ncn
−2 ,

‖L̃L − G̃Y ‖F ≤ νL‖L̃0 − G̃Y ‖F ≤ νL ε0σmin(G̃Y )
128κ2 . (63)

If we take L = �ε−1
0 log(σm a x (HX)

128κ3 ε )� with an arbitrarily small

positive constant ε, since σmax(G̃Y ) =
√

ncσmax(HX),

‖L̃L − G̃Y ‖F ≤ n1/2
c ε, (64)

which completes the proof of Theorem 3.

F. Proof of Theorem 4:

The proof of Theorem 4 is similar to Theorem 3, except some
modification to handle the noise matrix N . We first present the
following lemma that will be useful in the proof.

Lemma 12: Suppose m ≥ 16 log(n), then
∥∥∥p−1H̃PΩ(N) − H̃N

∥∥∥ ≤
√

16 log(n)
m

ncn
∥∥∥H̃N

∥∥∥
∞

with probability at least 1 − ncn
−2 .

Proof of Theorem 4 For the noisy case where M = X +

N , we have assumed ‖N‖∞ ≤ ε0 ‖HX‖
2048κ3r1/2n

1/2
c n

. Recall (29),

define S = D̃N , then

‖G̃S‖∞ = ‖H̃N‖∞ = ‖N‖∞ ≤ ε0σmin(G̃Y )
2048κ2r1/2ncn

.
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Similar to the derivation of (39), we have

‖L̃l+1 − G̃Y ‖

≤ 2
∥∥∥PŜl

G̃(Ŷ l + p̂−1PΩ l + 1 (Y + S − Ŷ l)) − G̃Y
∥∥∥

≤ 2
∥∥∥PŜl

G̃(Ŷ l + p̂−1PΩ l + 1 (Y − Ŷ l)) − G̃Y
∥∥∥

+ 2‖p̂−1PŜl
G̃PΩ l + 1 (S)‖.

‖L̃l+1 − G̃Y ‖F ≤
√

2r‖L̃l+1 − G̃Y ‖

≤ 2
√

2r
∥∥∥PŜl

G̃(Ŷ l + p̂−1PΩ l + 1 (Y + S − Ŷ l)) − G̃Y
∥∥∥

≤ 2
√

2r
∥∥∥PŜl

G̃(Ŷ l + p̂−1PΩ l + 1 (Y − Ŷ l)) − G̃Y
∥∥∥

+ 2
√

2r‖p̂−1PŜl
G̃PΩ l + 1 (S)‖

≤ 2
√

2r
∥∥∥(I − PŜl

)
(L̃

′
l − G̃Y )

∥∥∥
F

+ 2
√

2r
∥∥∥(PŜl

G̃G̃∗PŜl
− p̂−1PŜl

G̃PΩ l + 1 G̃∗PŜl

)
(L̃

′
l − G̃Y )

∥∥∥
F

+ 2
√

2r
∥∥∥PŜl

G̃(I − p̂−1PΩ l + 1 )G̃∗(I − PŜl
)(L̃

′
l − G̃Y )

∥∥∥
F

+ 2
√

2r‖p̂−1PŜl
G̃PΩ l + 1 (S)‖

:=
√

2r(I5 + I6 + I7) + I9 , (65)
where I5 + I6 + I7 has been defined in (58).

Similar to the proof of Theorem 3, we show that the following
inequality holds with high probability by induction.

‖L̃k − G̃Y ‖F ≤ ε0σmin(G̃Y )
128

√
2κ2r1/2

. (66)

Inductive Step: Suppose (66) holds when k = l and l ≥ 0. By
Lemma 5 and (56), we have

√
2rI5 ≤ 2

√
2r‖L̃′

l − G̃Y ‖2
F

σmin(G̃Y )
≤ 128

√
2κ2√r‖L̃l − G̃Y ‖2

F

σmin(G̃Y )

≤ ε0‖L̃l − G̃Y ‖F .

Similar to I6 and I7 ,
√

2r(I6 + I7) ≤ 326κ

√
2μcsr2 log(n)

m̂
‖L̃l − G̃Y ‖F .

Hence, if m̂ ≥ C6ε
−2
0 μcsκ

2r2 log(n) for some constant C6 ,√
2r(I5 + I6 + I7) ≤ 2ε0‖L̃l − G̃Y ‖F

with probability at least 1 − 2ncn
−2 . On the other hand, if m ≥

256r log(n), then with probability at least 1 − ncn
−2

I9 ≤ 2
√

2r‖p̂−1 G̃PΩ l + 1 (S)‖
≤ 2

√
2r‖p̂−1 G̃PΩ l + 1 (S) − G̃S‖ + 2

√
2r‖G̃S‖

≤ 8
√

2

√
r log(n)

m
ncn‖G̃S‖∞ + 2

√
2rncn‖G̃S‖∞

≤ 1
16
√

2

√
r log(n)

m

ε0σmin(G̃Y )
κ2r1/2 +

ε0σmin(G̃Y )
512

√
2κ2r1/2

≤ ε0σmin(G̃Y )
256

√
2κ2r1/2

, (67)

where the second last inequality comes from Lemma 12.
Following ν = 2ε0 ≤ 1/2 and (66), with probability at least

1 − 3ncn
−2 , we can bound ‖L̃l+1 − G̃Y ‖F by

1
2
‖L̃l − G̃Y ‖F +

ε0σmin(G̃Y )
256

√
2κ2r1/2

≤ ε0σmin(G̃Y )
128

√
2κ2r1/2

.

Hence, (66) also holds when k = l + 1.
Base Case: Since L̃0 = Qr

(
p̂−1H̃PΩ0 (X + N)

)
, then with

probability at least 1 − ncn
−2 ,

‖L̃0 − G̃Y ‖F ≤
√

2r‖L̃0 − G̃Y ‖

≤
√

2r
∥∥∥p−1 G̃PΩ(Y + S) − L̃0

∥∥∥

+
√

2r
∥∥∥p−1 G̃PΩ(Y + S) − G̃Y

∥∥∥

≤ 2
√

2r
∥∥∥p−1 G̃PΩ(Y ) − G̃Y

∥∥∥+ 2
√

2r
∥∥∥p−1 G̃PΩ(S)

∥∥∥

≤
√

512μcsr2 log(n)
m

‖G̃Y ‖ +
ε0σmin(G̃Y )
256

√
2κ2

√
r
.

where the last inequality comes from (67) and Lemma 6. To
guarantee that (66) holds with k = 0, we need√

512μcsr2 log(n)
m

‖G̃Y ‖ ≤ ε0σmin(G̃Y )
256

√
2κ2

√
r
. (68)

That is m̂ ≥ C7ε
−2
0 μcsκ

6r3 log(n) for some constant C7 .
Let C3 = max{C6 , C7}, if m̂ ≥ C3ε

−2
0 μcsκ

6r3 log(n), for
each l ≥ 0, with probability 1 − 2ncn

−2 , we have

‖L̃l+1 − G̃Y ‖F ≤ 2ε0‖L̃l − G̃Y ‖F + Δ. (69)

where Δ = 32
√

2ncn‖G̃S‖∞ + 2
√

2r1/2‖G̃S‖. Then

‖L̃l+1 − G̃Y ‖F − Δ
1 − ν

≤ ν
(
‖L̃l − G̃Y ‖F − Δ

1 − ν

)
.

Therefore, with probability 1 − (3L + 1)ncn
−2 ,

‖L̃L − G̃Y ‖F ≤ νL‖L̃0 − G̃Y ‖F +
Δ

1 − ν
. (70)

Similar to (64), take L = �ε−1
0 log(σm a x (HX)

128κ3 ε )� with an arbitrar-
ily small positive constant ε, since ν ≤ 1/2,

‖L̃L − G̃Y ‖F ≤ n1/2
c ε + 64

√
2ncn‖G̃S‖∞ + 4

√
2r1/2‖G̃S‖

≤ n1/2
c ε + 128ncn‖G̃S‖∞ + 8r1/2‖G̃S‖.

which completes the proof of Theorem 4.

G. Proof of Theorem 5

We first introduce some useful lemmas.
Lemma 13 ([23], Corollary 7.7.4(a)): If A,B ∈ Cn are

positive-definite, then A � B if and only if B−1 � A−1

Lemma 14 ([32], Th. 7): Let λ1 ≥ · · · ≥ λn be eigenvalues
of A, denoted by λi(A) = λi . Let A and B be Hermitian
positive semi-definite n × n matrices. If 1 ≤ k ≤ i ≤ n and
1 ≤ l ≤ n − i + 1, then

λi+ l−1(A)λn−l+1(B) ≤ λi(AB) ≤ λi−k+1(A)λk (B).
In particular,

λn (A)λn (B) ≤ λn (AB), λ1(AB) ≤ λ1(A)λ1(B).
Proof of Theorem 5: Consider nc = 1, the definition of H

can be extended to a row vector, which corresponds with one
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channel data. Let HXk∗ = U kΣkV k and HX = UΣV be
the SVD of HXk∗ and HX . Then, μ0 is defined as

max
k1

∥∥e∗
k1

U k

∥∥2 ≤ μ0r

n1
, max

k2

∥∥e∗
k2

V k

∥∥2 ≤ μ0r

n2
.

Notice that all HXk∗ share the same column space and row
space, they have the same incoherence μ0 . It is trivial μ = μ0
if we consider the incoherence of row spaces. Hence, we only
focus on the incoherence of column space.

By (6), HX = P LΓP T
R . Define a series of diagonal ma-

trices Dk as Dk = diag(dk ) with 1 ≤ k ≤ nc , and dk =
[dk,1 , . . . , dk,r ], where dk,i = r∗

i s1Ck∗li . We need one mild as-
sumption that dk,i �= 0. It guarantees that each Dk is full rank.
Thus, HXk∗ = ELDkP R , where EL = P L with nc = 1.
There exists a row-switching matrix Q1 satisfying

Q1(HX) =

⎡
⎢⎢⎣

HX1∗
HX2∗

...
HXnc ∗

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ELD1
ELD2

...
ELDnc

⎤
⎥⎥⎦P R := ẼLP R .

Define a mapping f : {1, 2, . . . , ncn1} �→ {1, 2, . . . , ncn1},
f(z) = w with ez = Q1ew , then f is a bijective mapping.
Hence, we have

max
l1

∥∥e∗
l1

U
∥∥2 = max

k1
(Q1ek1 )

∗ẼL (Ẽ
∗
L ẼL )−1Ẽ

∗
L (Q1ek1 )

= max
k1

e∗
k1

ẼL

(
nc∑

k=1

D∗
kE∗

LELDk

)−1

Ẽ
∗
Lek1 .

(71)

Consider 1 ≤ k1 ≤ n1 , we know that e∗
k1

ẼL = ê∗
k1

ELD1 ,
where ek1 ∈ Cnc n1 and êk1 ∈ Cn1 are both coordinate vec-
tors. Additionally, it is easy to show that symmetric matrices
{D∗

kE∗
LELDk}nc

k=1 are positive definite since {ELDk}nc

k=1
are full rank. Also, following Lemma 13, we have

nc∑
k=1

D∗
kE∗

LELDk � D∗
1E

∗
LELD1 � 0,

(
nc∑

k=1

D∗
kE∗

LELDk

)−1

≺ (D∗
1E

∗
LELD1)−1 . (72)

Then,

∥∥e∗
k1

U
∥∥2 = ê∗

k1
ELD1

(
nc∑

k=1

D∗
kE∗

LELDk

)−1

D∗
1E

∗
L êk1

< ê∗
k1

ELD1(D∗
1E

∗
LELD1)−1D∗

1E
∗
L êk1

= ê∗
k1

EL (E∗
LEL )−1E∗

L êk1 ≤ u0r

n1
=

(ncu0)r
ncn1

.

Similarly, we can prove
∥∥e∗

k1
U
∥∥2

<
(ncu0)r
ncn1

for all i satisfying

1 ≤ i ≤ ncn1 , which leads to (25).
Moreover, we can provide a tighter bound on μ with a stronger

assumption. Suppose there exists a d̂ ∈ C and a real number
δ ∈ (0, 1) satisfying (1 − δ)|d̂| ≤ |dk,i | ≤ (1 + δ)|d̂|.

By Lemma 14, define κL = σm a x (EL )
σm in (EL ) , then:

λmax(D∗
1E

∗
LELD1) = λmax(E∗

LELD1D
∗
1)

≤ λmax(E∗
LEL )λmax(D1D

∗
1)

≤ κ2
L (1 + δ)2

(1 − δ)2 λmin(E∗
LEL )λmin(DkD∗

k )

≤ κ2
L (1 + δ)2

(1 − δ)2 λmin(D∗
kE∗

LELDk ).

since even the minimum eigenvalue of D∗
kE∗

LELDk is larger

than the maximum one of (1−δ)2

κ2
L (1+δ)2 D∗

1E
∗
LELD1 , we have

nc n∑
k=1

D∗
kE∗

LELDk � [1 + (nc − 1)
(1 − δ)2

κ2
L (1 + δ)2 ]D∗

1E
∗
LELD1 .

Similarly, we can establish the following relation between μ and
μ0 ,

μ ≤ ncμ0

1 + (nc − 1) (1−δ)2

κ2
L (1+δ)2

.
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