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Correction of Corrupted Columns Through Fast
Robust Hankel Matrix Completion
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Abstract—This paper studies the robust matrix completion
(RMC) problem with the objective to recover a low-rank matrix
from partial observations that may contain significant errors. If
all the observations in one column are erroneous, existing RMC
methods can locate the corrupted column at best but cannot re-
cover the actual data in that column. Low-rank Hankel matrices
characterize the additional correlations among columns besides
the low-rankness and exist in power system monitoring, magnetic
resonance imaging (MRI) imaging, and array signal processing.
Exploiting the low-rank Hankel property, this paper develops an
alternating-projection-based fast algorithm to solve the nonconvex
RMC problem. The algorithm converges to the ground-truth low-
rank matrix with a linear rate even when all the measurements in a
constant fraction of columns are corrupted. The required number
of observations is significantly less than the existing bounds for the
conventional RMC. Numerical results are reported to evaluate the
proposed algorithm.

Index Terms—Matrix completion, low-rank Hankel matrix,
matrix decomposition, non-convex method.

I. INTRODUCTION

ROBUST matrix completion (RMC) [5] aims to recover a
low-rank matrix X∗ in Cnc×n (nc ≤ n) from partial ob-

servations of measurements M = X∗ + S∗ , where the sparse
matrix S∗ in Cnc×n represents arbitrary errors. Due to the wide
existence of low-rank matrices, RMC finds applications in areas
like video surveillance [28], face recognition [2], MRI image
processing [26], network traffic analysis [22], and power sys-
tems [10]. For instance, each row of X∗ represents the mea-
surements from one phasor measurement unit (PMU) in power
systems, and each column corresponds to the time-synchronized
measurements from multiple PMUs [11]. S∗ represents the bad
measurements.

Manuscript received July 4, 2018; revised December 11, 2018; accepted
February 22, 2019. Date of publication March 8, 2019; date of current version
April 12, 2019. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Mark A. Davenport. This work was
supported in part by the National Science Foundation under Grant 1508875, in
part by the Army Research Office under Grant W911NF-17-1-0407, and in part
by the Electric Power Research Institute under Grant #1007316. The preliminary
results about RPCA of the paper were presented in part at the IEEE International
Symposium on Information Theory (ISIT), 2018 [34]. The paper builds upon
[34] and extends it to RMC. (Corresponding author: Meng Wang.)

The authors are with Department of Electrical, Computer, and Systems En-
gineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA (e-mail:,
zhangs21@rpi.edu; wangm7@rpi.edu).

This paper has supplemental downloadable multimedia material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TSP.2019.2904021

Let ̂Ω ⊆ {1, . . . , nc} × {1, . . . , n} contain the indices of the
observed entries. If X∗ is at most rank r and S∗ contains at
most s nonzero entries, RMC can be formulated as a nonconvex
optimization problem,

min
X,S∈Cnc×n

∑

(i,j)∈̂Ω

|Mi,j −Xi,j − Si,j |2

s.t. rank(X) ≤ r and ‖S‖0 ≤ s,

(1)

where ‖S‖0 measures the number of nonzero entries in S. If all
the entries are observed, i.e., ̂Ω contains all the indices, (1) re-
duces to the robust principal component analysis (RPCA) prob-
lem, which decomposes a low-rank matrix and a sparse matrix
from their sum. IfS∗ is a zero matrix, (1) reduces to the low-rank
matrix completion problem.

One line of research is to relax the nonconvex rank and �0-
norm terms in (1) into the corresponding approximated convex
nuclear norm and �1-norm. Under mild assumptions, X∗ and
S∗ are indeed the solution to the convex relaxation (see e.g., [5],
[18] for RMC and [2], [7], [14] for RPCA). Since the convex
relaxation is still time-consuming to solve, fast algorithms based
on alternating minimization or gradient descent are developed
recently to solve the nonconvex problem directly, for example
[12], [19] for RMC and [6], [23], [32] for RPCA. These ap-
proaches are more computationally efficient than the convex
alternatives.

If the fraction of nonzeros in each column and row of S∗

is at most Θ( 1r ), then both the convex method in [5] and the
nonconvex method in [9] are proven to be able to recover X∗

successfully.1 If all the observations in a column are corrupted,
however, with the prior assumption that the matrix is low-rank,
one can locate the corrupted column at best but cannot recover
the actual values in either RPCA [29] or RMC [7]. Since every
column is a data point in the r-dimensional column subspace,
even if the column subspace is correctly identified, at least r
linearly independent equations, i.e., r entries of each column,
are needed to determine the exact values of that column.

In many applications, the low-rank matrix has the additional
low-rank Hankel property. For instance, if X∗ contains the time
series of nc output channels in a dynamical system, then the
Hankel matrix of X∗ is approximately low-rank, provided that

1f(n) = O(g(n)) means that if for some constant C > 0, f(n) ≤ Cg(n)
holds when n is sufficiently large. f(n) = Θ(g(n)) means that for some con-
stants C1 > 0 and C2 > 0, C1g(n) ≤ f(n) ≤ C2g(n) holds when n is suffi-
ciently large.
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the dynamical system can be approximated by a reduced-order
linear system. As demonstrated in [33], the Hankel matrix of
the spatial-temporal blocks of PMU data in power systems is
low-rank. In array signal processing, the Hankel matrix of a
spectrally sparse signal is low-rank [1], [8], [30], and the rank
depends on the number of sinusoidal components. The low-rank
Hankel property also holds for a class of finite rate of innovation
(FRI) signals, which are motivated by MRI imaging [13], [16],
[24], [25], [31].

The low-rank Hankel property has been exploited for data
recovery and error correction. Refs. [1], [8], [33] studied the
low-rank Hankel matrix completion problem from missing data
and proved analytically that the required number of measure-
ments by their respective approaches are significantly smaller
than that needed to recover a general low-rank matrix. Error
correction by exploiting the low-rank Hankel structure has been
exploited in RPCA [17] and RMC [8]. Ref. [8] provides the ana-
lytical guarantee of low-rank Hankel matrix recovery from ran-
domly located data losses and corruptions. No analytical guar-
antee is provided for fully corrupted channels in [8]. Moreover,
the recovery approach in [8] requires solving Semidefinite Pro-
gramming (SDP), which is computationally expensive in large
datasets.

This paper solves the RMC problem of a low-rank Hankel ma-
trix. Extending from the methods in [9], [23], this paper devel-
ops an alternation-projection-based algorithm, and the iterates
are proved to converge to the ground-truth data matrix linearly
with a complexity of O(r2ncn log(n) log(1/ε)), where ε is the
recovery error of X∗. The computational cost is significantly
smaller than the approach in [8]. The required number of obser-
vations for the successful recovery isO(μ2r3 log2(n) log(1/ε)),
where μ is the incoherence of the corresponding Hankel matrix.
This number is significantly smaller than the existing bound of
O(rn log2(n)) for recovering a general rank-r matrix [27].

Our data model follows the multi-channel Hankel matrix stud-
ied in [33], which models multiple signals with common sinu-
soidal components. The multi-channel Hankel matrix is differ-
ent from the single-channel Hankel matrix studied in [1], [8],
where the recovery of only one spectrally sparse signal is con-
sidered. Our work provides the first algorithmic development
with the theoretical performance guarantee for multi-channel
low-rank Hankel matrix recovery from corrupted measurements.
Our method can tolerate up to Θ( 1r ) fraction of corruptions per
row and does not have any constraint on the number of cor-
ruptions per column. In fact, our method can recover X∗ accu-
rately even if S∗ contains a constant fraction of fully corrupted
columns. Full corrupted columns happen in many applications.
For example, simultaneous bad data across all channels can hap-
pen due to device malfunctions, communication errors, or cyber
data attacks in power systems.

The rest of the paper is organized as follows. Sections II and
III introduce the problem formulation and discuss the related
work. Sections IV and V describe the proposed algorithm and
the theoretical performance guarantee. Section VI shows the
numerical results. Section VII concludes the paper.

Notation: Vectors are bold lowercase, matrices are bold up-
percase, and scalars are in normal font. For instant,Z is a matrix,
and z is vector. Zi∗ denotes the i-th row of Z, and Zij denotes

the (i, j)-th entry of Z. I and ei denote the identity matrix and
the i-th standard basis vector.
ZT and ZH denote the transpose and conjugate transpose

of Z, so do zT and zH . The inner product between two
vectors is 〈z1, z2〉 = zH

2 z1, and corresponding �2 norm is
‖z‖2 = 〈z, z〉1/2. For matrices, the inner product is defined as
〈Z1,Z2〉 = Tr(ZH

2 Z1). ‖Z‖F stands for the Frobenius norm
with ‖Z‖F = 〈Z,Z〉1/2. The spectral norm of matrix Z is de-
noted by ‖Z‖2. The maximum entry (in absolute value) of Z
is denoted as ‖Z‖∞. In addition, we use σi(Z1) to denote the
i-th largest singular value of Z1, and λi(Z2) to denote the i-
th largest eigenvalue (in absolute value) of a symmetric matrix
Z2. Linear operators on matrix spaces will be denoted by calli-
graphic letters. In particular, I is the identity operator.

II. PROBLEM FORMULATION

Let X∗ = [x1,x2, . . . ,xn] ∈ Cnc×n denote the actual data.
We define a linear operator Hn1

: Cnc×n → Cncn1×n2 that
maps a matrix into its corresponding Hankel matrix, i.e.,

Hn1
(X∗) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x1 x2 · · · xn2

x2 x3 · · · xn2+1

...
...

. . .
...

xn1
xn1+1 · · · xn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ Cncn1×n2

(2)
with n1 + n2 = n+ 1. We say X∗ satisfies the low-rank Han-
kel property if rank(Hn1

(X∗)) ≤ r for some r � n and some
integer n1 in [r, n+ 1− r]. Throughout this paper, we assume
n1 > 1 is known and fixed and use HX∗ instead of Hn1

(X∗)
for simplicity.

Let S∗ denote the additive errors in the measurements. We
assume at most s measurements are corrupted, i.e., ‖S∗‖0 ≤ s.
The values of the nonzero entries can be arbitrary. The measure-
ments are presented by

M = X∗ + S∗. (3)

Define the operator P
̂Ω with P

̂Ω(M)i,j = Mi,j if (i, j) ∈ ̂Ω,
and 0 otherwise. The robust low-rank Hankel matrix completion
problem aims to recover X∗ from P

̂Ω(M). We formulate it as
the following nonconvex optimization problem,

min
X,S

∥

∥P
̂Ω(M −X − S)

∥

∥

F

s.t. rank(HX) ≤ r and ‖S‖0 ≤ s,
(4)

where the nonconvexity results from the constraints.
Definition 1: A rank-r matrix L ∈ Cl1×l2 , with its Singular

Value Decomposition (SVD) L = UΣV H , is μ-incoherent if

max
1≤i≤l1

‖eTi U‖2 ≤ μr

l1
, max

1≤j≤l2
‖eTj V ‖2 ≤ μr

l2
. (5)

The incoherence assumption is standard in analyzing RPCA
and MC problem, see, e.g., [3], [29]. If a matrix is both low-rank
and sparse, like eieTj , then there is no way to separate the sparse
component and the low-rank component. The incoherence as-
sumption prevents the low-rank matrix L to be sparse itself. The
incoherence measures the closeness of L to matrices like eieTj .
If L = eie

T
j , the corresponding μ is as large as max{l1, l2}/r.
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However, When μ is small, the energy of L is spread over all its
entries.

We assume S∗ and X∗ satisfy the following assumption
throughout the paper. We will show our method can accurately
recover X∗ based on this assumption.

Assumption 1: Each row of S∗ contains at most α fraction of
non-zero entries withα ≤ C1

μcsr
for some small positive constant

C1 ≤ 1
840 ,2 where cs = max( n

n1
, n
n2

); HX∗ is rank-r and μ-
incoherent.

In the successful recovery of X∗ in conventional RPCA, S∗

can have at mostΘ( 1r ) fraction of nonzeros in each row and each
column [23]. In contrast, Assumption 1 only requires an upper
limit for each row, while the entries in one column of S∗ can
all be nonzero. In fact, S∗ can contain α fraction of consecutive
columns with all nonzero entries. If n1 and n2 are in the same
order, i.e., both proportional to n, then cs is a constant. α could
be as large asΘ( 1r ). Thus, our method can handle bad data across
all the channels consecutively for a nearly constant fraction of
time if each row of X∗ corresponding to a time series.

III. APPLICATIONS AND RELATED WORK

A. Low-Rank Hankel Matrices

The low-rank Hankel property has been recently exploited in
different areas including array signal processing [8], [30], dy-
namic system monitoring [33], and magnetic resonance imaging
(MRI) [16], [25], [31].

One example of the low-rank Hankel property is the class
of spectrally sparse signals [1], which are weighted sums of r
damped or undamped sinusoids. The mathematical expression
of an one-dimensional spectrally sparse signal is

g[t] =

r
∑

i=1

die
(2πıfi−τi)t, t ∈ N, (6)

where fi and di are the frequency and the normalized complex
amplitude of the i-th sinusoid, respectively, and ı is the imaginary
unit. As g[t] is the sum of r sinusoids, its degree of freedom is
Θ(r). The one-dimensional spectrally sparse signal g[t] can be
viewed as a special case of X∗ in our paper. Specifically, X∗

only contains one row, i.e., nc = 1, and let its i-th entry be g[i].
We follow [33] and refer to the resulting Hankel matrix as a
single-channel Hankel matrix to differentiate from our general
model of a multi-channel Hankel matrix with nc > 1 in (2).

Ref. [8] also considers two-dimensional (2-D) and higher-
dimensional spectrally sparse signals that are the sums of r 2-D
or higher-dimensional sinusoids. The data matrix X∗ of a 2-D
spectrally sparse signal in [8] can be represented as

X∗
t1,t2

=

r
∑

i=1

die
(2πıf1i−τ1i)t1+(2πıf2i−τ2i)t2 , (7)

where Xt1,t2 is the entry in row t1 and column t2. Note that the
degree of freedom of X is still Θ(r) for a 2-D signal.

The second example of the low-rank Hankel property is the
outputs of linear dynamic system discussed in [33]. Consider

2The constant C1 is derived from (67) and (72) in the Appendix.

a discrete-time system with the state vector st ∈ Cnp , and the
observation vector xt ∈ Cnc ,

st+1 = Ast,

xt+1 = Cst+1, t = 0, 1, . . . , n.
(8)

As described in [33], the data matrix X∗ = [x1,x2, . . . ,xn]
satisfies low-rank Hankel property. Hn1

(X∗) is rank r for
n1 ∈ [r, n+ 1− r], and the rank r is the number of the ob-
served modes of the dynamical system. If r < nc, Hn1

(X∗) is
also rank r for any n1 ∈ [1, n+ 1− r]. Each row of X∗ can be
represented by an one-dimensional spectrally sparse signal. All
rows share the same set of sinusoids but have different weights.
The entry in row k and column t, denoted byX∗

k,t, can be written
as

X∗
k,t =

r
∑

i=1

dk,ie
(2πıfi−τi)t, k = 1, . . . , nc, (9)

where dk,i is the normalized complex amplitude of the i-th sinu-
soid in the k-th signal. The degree of freedom of X∗ is Θ(ncr).
We also remark that this paper considers the recovery of X∗,
which is irrelevant to the observability and identifiability of the
linearly dynamical system in (8). Our method directly recovers
the data from partial observations and does not need to estimate
the system model.

In MRI imaging, a signal is called finite rate of innovation
(FIR) [25] if there exists a finite sequence h[t] such that

(x∗ ∗ h)[t] = 0, ∀t, (10)

where (·) ∗ (·) computes the convolution of two signals. Such
h[t] is also known as annihilating filter. If the length of h[t] is
r + 1, then the Hankel matrix Hn1

(x) is a rank-r matrix for
some n1 ∈ [r, n− r + 1]. The MRI images satisfy (10) after
some transformation. The low-rank Hankel property has been
exploited in MRI image recovery [16], [25], [31].

B. Robust Matrix Completion

When n1 = 1, (4) reduces to the conventional RMC problem
studied in [2], [4], [5], [7], [9], [12], [18], [19], [21]. If all the
measurements are available, RMC reduces to the RPCA prob-
lem. The state-of-art RPCA algorithms such as [14], [23] can
recover the low-rank matrix even if at most O( 1r ) fraction of
entries per row and per column are corrupted. This bound is also
proved to be order-wise optimal [23]. If no corruptions exist,
RMC reduces to the low-rank matrix completion problem, and
O(μ0rn log n) measurements are needed to recover an nc-by-n
(nc < n) rank-r matrix with incoherence μ0 [3].

For the general RMC problem, one approach is to relax the
nonconvex rank and �0-norm into the convex nuclear norm and
�1 norm and then solve the resulting convex optimization prob-
lem [2], [5], [18], [21]. Refs. [2], [5] show that the convex ap-
proach can correct a constant fraction of randomly distributed
outliers, provided that a constant fraction of the matrix entries
are observed. Based on a stronger requirement on the incoher-
ence of the matrix, ref. [21] improves the theoretical bound such
that only O(μ0rn log2(n)) observed entries are required while
tolerating a constant fraction of bad data. Although fully cor-
rupted columns are considered in [7], [18], both papers cannot
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recover the corrupted columns. Ref. [7] shows that whenS∗ con-
tains fully corrupted columns, the convex approach can recover
noncorrupted columns and estimate the column subspace accu-
rately. However, their approach can only locate the corrupted
column but cannot recover its actual entries. Ref. [18] provides
an upper bound of RMC when the measurements contain noise.
The error bound is large when some columns are fully corrupted,
because the recovery of corrupted columns is not accurate.

Fast algorithms to solve the nonconvex formulation directly
have been recently developed. Ref. [4] adds a nonconvex penalty
function to speed up the minimization through a shrinkage op-
erator, but no analytical analysis is reported. Ref. [19] proposes
a projected gradient descent algorithm over the nonconvex sets.
Ref. [12] proposes an alternating minimization algorithm. Both
[12] and [19] prove the proposed algorithms converge under the
assumption of Restrict Isometric Property (RIP), but no theoret-
ical analyses of the recovery performance are provided.

The low-rank Hankel has been exploited in missing data re-
covery but not much in error corrections. Refs. [1] analyze
the matrix completion performance for single-channel Hankel
matrices, i.e., nc = 1. Ref. [33] extends the analysis to multi-
channel Hankel matrices with nc > 1. IfS∗ is a zero matrix, one
can recover X∗ from O(μr3 log n) observations [33], where μ
is the incoherence of HX∗. Theorem 5 of [33] indicates that μ
is a constant for a group of well separated frequencies fi’s and
concentrated normalized amplitude dk,i’s.

Only Refs. [8] and [17] consider the RMC problems for the
low-rank Hankel matrix. The nonconvex rank and �0-norm are
relaxed into the convex nuclear norm and �1-norm, respectively
in both [8] and [17], and only Ref. [8] provides the theoretical
guarantee. Although high-dimensional spectral sparse signals
are considered in [8], the degree of freedom of these signals
is still Θ(r), which corresponds to single-channel Hankel ma-
trices in our setup. We consider multi-channel Hankel matrix
wherenc > 1 in this paper. Moreover, Ref. [8] assumes the loca-
tions of the corrupted entries are randomly distributed and does
not provide any theoretical recovery guarantee when column-
wise corruptions exist. This paper provides the first theoretical
study of RMC and RPCA for multi-channel low-rank Hankel
matrices with fully corrupted columns. Furthermore, the convex
approach in [8] requires solving SDP, which is time-consuming
for large-scale problems. The computational complexity of solv-
ing the SDP to recover the Hankel matrix HX∗ is O(ncn

3/ε),
while the computational complexity of our algorithm is
O(r2ncn log(n) log(1/ε)), where ε is the approximation error.

C. Rank-Based Stagewise (R-RMC) Algorithm

Ref. [9] proposed a nonconvex algorithm called Rank-based
stagewise (R-RMC) algorithm to solve RMC. The R-RMC al-
gorithm is directly extended from the AltProj algorithm in [23]
for RPCA by adjusting to partial measurements. R-RMC con-
tains two loops of iterations. In the k-th stage of the outer loop,
it decomposes M into a rank-k matrix and a sparse matrix. The
resulting matrices are used for initial points in the (k + 1)-th
stage. In the t-th iteration of the inner loop, it updates the sparse
matrixSt and the rank-k matrixLt+1 based onSt−1 andLt.St

is obtained by a hard thresholding over the residual error between

M and Lt. Lt+1 is updated by first moving along the gradient
descent direction and then truncating it to a rank-k matrix. The
reason of using an outer loop instead of directly decomposing
into a rank-r and a sparse matrix is that by the initial thresh-
olding, the remaining sparse corruptions in the residual is in the
order of σ1(X

∗). These corruptions would lead to large errors in
the estimation of the lower singular values of X∗. Through the
outer loop, the algorithm recovers the lower singular values after
the corruptions at higher values are already removed. The com-
putational complexity of R-RMC is O((mr2 + nr3) log(1/ε)),
where m is the number of observed measurements.

To achieve a recovery accuracy of ε, R-RMC requires at least
O(μ2

0r
3n log2(n) log(1/ε)) observed measurements. The per-

centage of outliers per row and per column is at most O( 1r ).
This paper develops an algorithm based upon R-RMC [9]

to solve the nonconvex problem (4). By exploiting the Hankel
structure, our algorithm can correct fully corrupted columns,
which cannot be corrected by R-RMC. Moreover, the required
number of measurements by our method is significantly less than
that by R-RMC.

IV. STRUCTURED ALTERNATING PROJECTION

(SAP) ALGORITHM

Here we present the structured alternating projections (SAP)
algorithm to solve (4). In the algorithm, M ,Xt,St ∈ Cnc×n,
and W t,Lt ∈ Cncn1×n2 . Tξ is the hard thresholding operator,

Tξ(Z)i,j = Zij if |Zij | ≥ ξ, and 0 otherwise. (11)

Let Z =
∑

i=1 σiuiv
H
i denote the SVD of Z with σ1 ≥

σ2 ≥ · · · . Qk finds the best rank-k approximation to Z, i.e.,

Qk(Z) =

k
∑

i=1

σiuiv
H
i . (12)

H† denote the Moore-Penrose pseudoinverse of H. Given any
matrix Z ∈ Cncn1×n2 , H†(Z) ∈ Cnc×n satisfies

(H†(Z))i,j =
1

wj

∑

k1+k2=j+1

Z(k1−1)nc+i,k2
, (13)

where wj denotes the number of elements in the j-th anti-
diagonal of an n1 × n2 matrix.

SAP is built upon Rank-based stagewise (R-RMC) [9]. The
major differences of SAP from R-RMC are the additional Hankel
structure. The main contribution of this paper is the analytical
performance guarantee of SAP, which we defer to Section V.
The key steps are summarized as follows. Similar to R-RMC
[9], SAP also contains two stages of iterations. In the t-th itera-
tion of the inner loop, it updates the estimated sparse error matrix
St and data matrix Xt+1 based on St−1 and Xt. St is obtained
by a hard thresholding over the residual error between M and
Xt. The thresholding ξt decreases as t increases. The entire
sampling set ̂Ω is first divided into several disjoint subsets. The
disjointness guarantees the independence across Xt and Xt+1,
which is a standard analysis trick in solving RMC (see [27]). To
obtain Xt+1, we first updated Xt by moving along the gradi-
ent descent direction with a step size p̂−1 = ncn

|̂Ωk,t|
. Then, W t

is calculated as the projection of the updated Xt to the Hankel
matrix space. Finally, Xt+1 is obtained by H†Lt+1, and Lt+1
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Algorithm 1: Structured Alternating Projections (SAP).

1: Input Observations P
̂Ω(M), thresholding parameter

ε, the largest singular value σ1 = σ1(HX∗), and
convergence criterion η = 4μcsr√

ncn
.

2: Initialization X0 = 0, ξ0 = ησ1.
3: Partition ̂Ω into disjoint subsets ̂Ωk,t (1 ≤ k ≤ r,

0 ≤ t ≤ T ) of equal size m̂, let p̂ = m̂
ncn

.
4: for Stage k = 1, 2, . . . , r do
5: for t = 0, 1, . . . , T = log(η

√
ncnσ1/ε) do

6: St = Tξt(P̂Ωk,t
(M −Xt));

7: W t =
H(Xt + p̂−1(P

̂Ωk,t
(M −Xt)− St));

8: ξt+1 = η(σk+1(W t) + ( 12 )
tσk(W t));

9: Lt+1 = Qk(W t);
10: Xt+1 = H†Lt+1;
11: end for
12: if ησk+1(W T ) ≤ ε√

ncn
then

13: Return XT+1;
14: end if
15: X0 = XT+1, ξ0 = ξT+1;
16: end for

is updated by truncating W t to a rank-k matrix. The maximum
number of iterations in each inner loop, denoted as T , is set as
log(η

√
ncnσ1/ε). In practice, the algorithm can exit the loop

before reaching the maximum number of iterations if Xt+1 is
already very close to Xt. In the k-th iteration of the outer loop,
the target rank increases from 1 gradually, and the resulting ma-
trices are used as the initialization in the (k + 1)-th stage.

The reason of using an outer loop instead of directly applying
rank-r approximation when calculating Lt is the same as that
in R-RMC [9] and AltProj [23]. By the initial thresholding, the
remaining sparse corruptions in the residual is in the order of
σ1(HX∗), the largest singular value ofHX∗. These corruptions
would lead to large errors in the estimation of the lower singular
values of HX∗. Through the outer loop, the algorithm recovers
the lower singular values after the corruptions with higher values
are already removed.

Calculating the best rank-k approximation in line 9 dom-
inates the computation complexity. Generally for a matrix
W t ∈ Cncn1×n2 , the best rank-k approximation can be solved
in O(kncn

2), and ncn
2 results from calculating W tz for

z ∈ Cn2 . Here, due to the Hankel structure of W t, a fast
convolution algorithm (see [1], [33]) only requires computa-
tional complexity at O(ncn log(n)) to compute (HZ)z for
any Z ∈ Cnc×n and z ∈ Cn2 . The fast convolution can also
applied to reduce the computational time to O(rncn log(n))
when calculating Xt+1 = H†Lt+1 with stored SVD of Lt+1

[1], [33]. Hence, the computational complexity per iteration
is O(rncn log(n)), and the total computational complexity is
O(r2ncn log(n) log(1/ε)).

One can directly apply R-RMC on the structured Hankel ma-
trix. The resulting algorithm differs from SAP in line 7 and 10
that the updated rank-k matrix is not projected to the Hankel ma-
trix space. Based on the analysis in [9], the computational time
per iteration of R-RMC on Hankel matrix is O(msr + ncnr

2),

and ms is the number of observed measurements in the struc-
tured Hankel matrix. With full observations, the computational
complexity per iteration of R-RMC on Hankel matrices is as
large as O(ncn

2r). By downsampling the observation set to its
theoretical limit in Theorem 2 of [9], the computational com-
plexity per iteration can be reduced to O(μ2r3ncn log2(n)).
However, it is still larger than O(rncn log(n)) of SAP. More-
over, the constant item of the theoretical limit in Theorem 2
[9] is hard to determine in practice. Furthermore, downsam-
pling will increases the iteration number numerically. Though
the complexity per iteration is reduced by downsampling, the
computational time may increase, which is reported in Fig. 1(b)
[9] as well.

We remark that σ1(HX∗) and μ may not be computed di-
rectly. σ1(HX∗) is only used to obtain the initial estimation of
the sparse matrix. In practice, we use p−1(HP

̂Ω(M)) to esti-
mate σ1(HX∗). This idea is borrowed from [9], [23]. As long
as the estimated value is in the same order as σ1(HX∗), all the
theoretical results in the following Theorem 1 still hold, with
a different constant C1 in Assumption 1. μ is only used in η
as η = μcsr√

ncn
. If the estimated incoherence is in the same order

as μ, all the results still hold with a different constant C1 in
Assumption 1 and a different constant C2 in (14). In practice,
one can estimate η by r√

ncn1n2
for incoherent matrices without

computing μ. This idea has been used in [2], [9], [23], which
all require μ in their algorithms but do not actually compute
it. Thus, we present SAP using σ1(HX∗) and μ to simply the
following theoretical analysis, and one can replace them with
estimated values in implementation.

We also note that the recovery of X∗ is irrelevant to the ob-
servability and identifiability of the linearly dynamical system in
(8), when X∗ contains the output time series of (8). Our method
directly recovers the data from partial observations and does not
need to estimate the system model.

V. RECOVERY GUARANTEE OF SAP

The recovery guarantee of SAP is summarized in Theorem 1,
and the proof is deferred to the Appendix.

Theorem 1: Suppose X∗, S∗ satisfy the Assumption 1, and
the support of the sampling set ̂Ω is randomly selected. Let η =
4μcsr√
ncn

and T = log(η
√
ncnσ1/ε) in Algorithm 1. If

m ≥ C2μ
2r3 log2(n) log (μcsrσ1/ε) , (14)

with probability at least 1− rncT log3(ncn)
n2 , its output X and S

satisfy:

‖X −X∗‖F ≤ ε

‖S − P
̂Ω(S

∗)‖F ≤ ε, Supp(S) ⊆ Supp
(

P
̂Ω(S

∗)
)

(15)

for some large constant C2 > 0.3

Theorem 1 indicates that the resultingX returned by SAP can
be arbitrarily close to the ground truth X∗ as long as the number
of observations exceeds O(μ2r3 log2(n) log(μcsrσ1/ε)), and
each row of S∗ has at most Θ( 1

μr ) fraction of outliers. If X∗

3The constant C2 = max(C4, C5), and C4 is derived from (61) in the proof
of Lemma 5, C5 is derived from (72) in the proof of Lemma 6.
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contains spectrally sparse signals as shown in (9), thenX∗ is also
rank r. If we directly apply a low-rank MC method via convex
relaxation [27] to recover X∗ from P

̂Ω(X
∗), the required num-

ber of observations is at least O(μ0rn log2(n)). Since n � r,
SAP reduces the required number of observations significantly
by exploiting the Hankel structure. Moreover, SAP can identity
and correct fully corrupted columns up to a fraction at Θ(1/μr).
In contrast, traditional RMC methods can locate the fully cor-
rupted columns but cannot recover the corrupted columns [7],
[29]. The number of iterations rT depends on log(1/ε), where ε
is desired accuracy. Therefore, the algorithm also enjoys a linear
convergent rate.

If there is no bad data, i.e. S∗ = 0, (4) is reduced to the MC
problem. Under the setup of spectrally sparse signals in (9), ac-
cording to the Theorem 5 in [33], a group of well separated
frequencies fi’s can guarantee that the incoherence μ < O(nc).
If we further assume on the normalized amplitude dk,i, say
that dk,i’s are close to each other, the incoherence μ is a con-
stant. The degree of freedom depends linearly on the rank r,
while the theoretical bound in (14) relies on (r3). When r is
small, the theoretical bound in (14) is nearly optimal. Compared
with our algorithm AM-FIHT in [33], SAP does not have the
heavy-ball step and increases the rank gradually instead of keep-
ing fixed rank. To achieve a recovery error of ε, AM-FIHT re-
quiresO(μκ6r2 log(n) log( σ1

κ3ε ))observations. In contrast, SAP
depends on r3 but does not rely on the conditional number κ,
where κ is defined as the ratio of the largest to smallest singular
values of HX∗.

If there is no missing data, i.e. ̂Ω = {(k, t)|1 ≤ k ≤ nc, 1 ≤
t ≤ n}, (4) is reduced to RPCA problem. Each row of S∗ can
have up to α ≤ C1

μcsr
fraction of corrupted entries. If we choose

n1 = n2, cs is constant. The existing results in [14], [23] for
RPCA can tolerate at most Θ( 1r ) fraction of outliers per row
and per column. SAP also tolerates at most Θ( 1r ) fraction of
outliers in each row. Moreover, SAP can recover fully corrupted
columns. There is no upper bound of the number of corrup-
tions per column. One can directly apply a general RPCA al-
gorithm such as AltProj [23] on the structured Hankel matrix
H(M), Altproj can recover the corrupted data correctly based
on the same analysis as in [23]. However, the computational time
per iteration of Altproj is O(rncn

2), which is much large than
O(rncn log(n)) by SAP.

VI. NUMERICAL RESULTS

We evaluate the performance of SAP numerically. The exper-
iments are implemented in MATLAB 2015 on a desktop with
3.4 GHz Intel Core i7-4770 CPU. Here, we study several modes
of missing data and bad data as shown in Figs. 1 and 2. For
each pair of data loss and bad data modes, the supports of the
bad data matrix S∗ and the observed indices ̂Ω are generated
independently. The models are summarized as:
� M1/B1: Missing data or bad data occur randomly across

the all channels and times;
� M2/B2: Missing data or bad data occur in all channel

simultaneously s at randomly selected time indices;
� B3: Bad data occurs simultaneously and consecutively in

all the channels. The starting point is selected randomly.

Fig. 1. Two modes of missing data.

Fig. 2. Three modes of bad data.

The performance is tested on the spectrally sparse signals
as shown in (9). Each fi in (9) is randomly selected from
(0,1). τi is set as 0 for all i. For the complex coefficient dk,i,
its angle is randomly selected from (0, 2π), and its magnitude
is set as 1 + 100.5ak,i , where ak,i is randomly selected from
(0,1). For each non-zero entry in the bad data matrix S∗, its
angle is randomly selected from (0, 2π) ( except for Fig. 4),
and its magnitude is randomly selected from (X̄∗, 5X̄∗), where
X̄∗ = ‖X∗‖F /

√
ncn is the average energy of X∗. Unless oth-

erwise stated, the size of the data matrix X∗ ∈ Cnc×n is set as
nc = 30 and n = 300, and n1 = n/2 = 150.

In SAP, the SVD algorithm for a structured Hankel matrix is
computed via PROPACK [20]. PROPACK provides a general
framework to compute the partial SVD of a structured matrix
that denoted by A, and the user is required to implement the
functions to compute Ay1 and AHy2. For a Hankel matrix
HZ1, the function to compute (HZ1)z2 is implemented by
calculating the convolution of z2 and each row of Z1. Since
σ1(HX∗) is unknown, we use p−1(HP

̂Ω(M)) to approximate
σ1(HX∗) in our experiments following the same idea in [9],
[23]. Also, during each iteration, we use the entire observed set
rather than the disjoint subsets as shown in line 3 of Alg. 1. In
each inner loop, instead of keeping a fixed number of iterations,
SAP will jump out of the current inner loop if

‖P
̂Ω(Xt+1 −Xt)‖F
‖P

̂Ω(Xt)‖F
≤ 10−3 (16)

before reaching the maximum iteration number, which is set as
200. SAP finally terminates if σk+1(W t) ≤ 10−3 holds.

The results in Figs. 3–10 are all obtained by averaging over
100 independent trials for each block. We say that the trial is
successful if the returned X satisfies that

‖P
̂Ωc(X −X∗)‖F
‖P

̂Ωc(X
∗)‖F

≤ 10−2, (17)
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Fig. 3. Phase transition of SAP with random outliers.

Fig. 4. Phase transition of SAP with outliers restricted in Quadrant I.

where ̂Ωc is the complementary set of ̂Ω over {1, 2, . . . , nc} ×
{1, 2, . . . , n}. A white block means that all 100 trials are suc-
cessful, while all trials fail in a black block.

A. Performance of SAP

In this experiment, we vary the rank and bad data percentage
to test the performance of SAP for several combined modes,
M1×B1, M2 × B2, and M2 × B3. M1 × B1 means missing
data model M1 and bad data mode B1. We only provide the
simulation results of these three combined modes because the
performances of SAP are almost the same under modes M1 ×
B1, M2 × B1, M1 × B2 and M2 × B2. The data loss percentage
is fixed as 50%.

Fig. 3 shows the recovery performance when the angles of
nonzero entries in S∗ is randomly selected from (0, 2π). The
x-axis is the bad data percentage, and the y-axis is the rank. The
results under M1 × B1 and M2 × B2 are included in Fig. 3
to illustrate the similarity of SAP under these modes, and the
similarity also shows that columnwise corruptions and missing
entries do not affect the performance of SAP. Under mode M2×
B3, we test SAP under simultaneous and consecutive bad data.
It can tolerate 9% outliers for a rank-17 matrix, and 27 out of
300 consecutive columns are corrupted.

Fig. 4 shows the recovery performance when the angles of
nonzero entries in S∗ is randomly selected from (0, π/2) such
that both the real and imaginary parts of S∗ are positive. Com-
paring Figs. 3 and 4, one can see that SAP performs very simi-
lar when the corruptions have random signs and when the cor-
ruptions have positive signs. The recovery performance with
random signs is slightly better in all three modes.

B. Comparison With Existing RMC Methods

We compare SAP with two other RMC methods to recover
X∗ from P

̂Ω(M). One is R-RMC [9], and the other is the con-
vex relaxation of (4) by relaxing rank and �0-norm to the ap-
proximated convex nuclear norm and �1-norm, and the convex

optimization is solved by Alternating Direction Method of Mul-
tipliers (ADMM) [2].4

Under M1 × B1, we apply ADMM and R-RMC on both
P

̂Ω(M) and the Hankel matrix H(P
̂Ω(M)).

Since ADMM and R-RMC cannot tolerate columnwise data
losses or corruptions, they can not recover X∗ under M2 ×
B2 and M2 × B3. Hence, we only test ADMM and R-RMC on
HP

̂Ω(M)under these two modes. The phase transitions in Fig. 5
are obtained by varying the data loss and bad data percentages,
and the rank is set as 5.

From the results shown in Figs. 5–7, under all these three
modes, SAP performs the best among all methods. In Fig. 5,
ADMM and R-RMC are both applied on the original observed
data matrixP

̂Ω(M), and the performances are much worse than
SAP. When applying ADMM and R-RMC on the structured
Hankel matrices, they both achieve higher success rates as shown
in Figs. 5, 6 and 7. However, under modes M1 × B1 and M2 ×
B2, ADMM can only handle up to 30% data loss even on the
structured Hankel matrix, while SAP can still recover the data
matrix under 80% data loss. R-RMC performs slightly worse
than SAP when applying on the structured Hankel matrix in
modes 1 and 2, but SAP obtains a much larger rate of success in
mode M2 × B3.

Moreover, SAP is significantly faster than ADMM and R-
RMC on structured Hankel matrix as shown in Fig. 8. We vary
number of columnsn from 2000 to 8000 with a step size of 1000,
and the results are averaging over 100 successful independent
trials for each n. Since the computational complexities of all
these methods depend linearly on nc, we keep nc = 1. The rank
is fixed as 5, andn1 is set asn/2 throughout the experiments. The
size of the Hankel matrix is approximately n

2 × n
2 . We consider

the mode of M1 × B1 where the locations of both bad data and
miss data are generated randomly, and the bad data percentage
is set as 20%. Since the computational complexity of R-RMC
depends on the size of observed set, we study both 50% and 95%
data loss percentages. The computational time of ADMM with
95% data loss is not included since it does not converge in this
setting.

The computational time of SAP increases the least as the ma-
trix size increases among all the methods. The convex method
ADMM is the slowest with 50% data loss. ADMM takes over
1000 seconds to recover the Hankel matrix of size 2000× 2000.
R-RMC takes around 935 seconds to recover the Hankel matrix
of size 4000× 4000. With95%data loss, the computational time
of R-RMC decreases by applying fast algorithms to compute the
sparse matrix multiplication. It takes much more time than SAP.
For example, SAP takes less than 40 seconds to recover the Han-
kel matrix of size 4000× 4000, while R-RMC takes around 227
seconds in the same setting.

C. Comparison With AM-FIHT in MC

In this experiment, we compare SAP with AM-FIHT [33] to
solve MC problem. We do not include other MC methods, such

4We downloaded the codes from https://github.com/andrewssobral for R-
RMC and https://github.com/dlaptev/RobustPCA for ADMM
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Fig. 5. Phase transition of SAP, ADMM and R-RMC under mode M1 × B1.

Fig. 6. Phase transition of SAP, ADMM and R-RMC on Hankel matrix under
mode M2 × B2.

Fig. 7. Phase transition of SAP, ADMM and R-RMC on Hankel matrix under
mode M2 × B3.

Fig. 8. Computational time of SAP, ADMM and R-RMC on the structured
Hankel matrix.

as SVT, because AM-FIHT is demonstrated to outperform other
methods in both recovering accuracy and computational time
[33]. We fix rank as 5. Since the number of observed entries for
successful recovery depends on the conditional number κ, we
consider both well-conditioned matrices, where κ is small, and
ill-conditioned matrices, where κ is large. To generate a well-
conditioned matrix, we just follow the same setup for generating
X∗ in the previous experiments. To generate a ill-conditioned
matrix, we enlarges the amplitude of the first sinusoid d1,i by a
factor of r in all channels.

Fig. 9 shows the performance of SAP when recovering ill-
conditioned matrices. When the matrix is well-conditioned, both

Fig. 9. Phase transition of SAP for ill-conditioned matrix.

Fig. 10. Phase transition of AM-FIHT for ill-conditioned matrix.

SAP and AM-FIHT perform very similarly. Moreover, SAP per-
forms similarly on both well-conditioned and ill-conditioned
matrices. This verify our result in (14) that the performance of
SAP does not depend on κ. We do not include the results of
SAP and AM-FIHT in well-conditioned matrices because they
are both similar to Fig. 9. When the matrix is ill-conditioned,
AM-FIHT is much worse than SAP.

VII. CONCLUSION AND DISCUSSIONS

The multi-channel low-rank Hankel matrix naturally charac-
terizes the correlations among columns of a matrix in addition to
the low-rankness. Exploiting the low-rank Hankel structure, this
paper develops a non-convex approach to recover the low-rank
matrix from partial observations, even when a constant fraction
of the columns are all corrupted simultaneously and consecu-
tively. The proposed algorithm converges to the ground-truth
matrix linearly. The required number of observations is signif-
icantly smaller than all the existing bounds for robust matrix
completion. Our method applies to power system monitoring,
MRI imaging, and array signal processing.
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APPENDIX

A. Notations and Technical Assumptions

Sampling model with replacement. As a standard tech-
nique in solving RMC problem [27], the model of sampling
with replacement assumes that every entry is sampled inde-
pendently with replacement. In this model, one entry can be
sampled multiple times. To distinguish from ̂Ω defined in
Section II, let Ω be the union of indices that uniformly sam-
pled from {1, 2, . . . , nc} × {1, 2, . . . , n} following the sam-
pling model with replacement. Due to the repetitions in the
sampling model with replacement, |Ω| ≥ |̂Ω| should hold for
successful recovery [27]. Hence, the required number of ob-
servations for successful recovery under sampling model with
replacement is sufficient to guarantee successful recovery under
sampling model without replacement.

Symmetric Hankel Operator. Here, we introduce the oper-
ator ˜H, which is the symmetric extension of Hankel operator H.
For anyZ ∈ Cnc×n, ˜H(Z) ∈ Cnc(n1+n2)×nc(n1+n2) is defined
as

˜H(Z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 · · · 0 (H(Z))H

...
. . .

...
...

0 · · · 0 (H(Z))H

H(Z) · · · H(Z) 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (18)

︸ ︷︷ ︸

nc copies

Define HX∗ = UΣV H as the SVD of HX∗, then ˜HX∗ can
be written as

˜HX∗ =
1√
2

(

˜V ˜V

U U

)(√
ncΣ 0

0 −√
ncΣ

)

1√
2

(

˜V ˜V

U U

)H

,

(19)
where ˜V = 1√

nc
[V H · · · V H ]H . Therefore, ˜HX is a rank-

2r matrix. Moreover, if HX∗ is μ-incoherent, one can easily
check that the incoherence μ̃ of ˜HX satisfies μ̃ ≤ cs

2 μ. When
n1 and n2 are in the same order, cs is a constant.

The key steps (lines 5–9) of Alg. 1 can be represented equiv-
alently based on ˜H as:

˜St = Tξt(M −Xt);

˜W t = ˜H
(

Xt + p−1PΩk,t
(M −Xt − ˜St)

)

;

ξt+1 =
η√
nc

(

|λ2k(˜W t)|+
(

1

2

)t

|λ2k+2(˜W t)|
)

;

˜Lt+1 = Q2k

(

˜W t

)

;

Xt+1 = ˜H†(
˜Lt+1

)

;

(20)

The Pseudoinverse operator ˜H† can be calculated from

(

˜H†(Z)
)

i,j
=

1

ncwj

〈

˜H
(

eie
T
j

)

,Z
〉

. (21)

In fact, (20) generates the same Xt’s as lines 5-9 in Alg. 1. (20)
differs from lines 5-9 in Alg. 1 mainly in two aspects : (1) ˜St

is updated based on the full observation of M ; (2) ˜W t lies in
the space defined by ˜H. Though we cannot calculate ˜St from
PΩ(M) in practice, ˜St is introduced to simplify our analysis
and does not affect the update ofXt. To see this, we first assume
the values of Xt−1 are the same for (20) and lines 5-9 in Alg. 1.
Then, the threshold ξt remains the same as well. Next, we have

PΩk,t
(˜St) = St, (22)

which suggests PΩk,t
(M −Xt)− St = PΩk,t

(M −Xt −
˜St). Operator ˜H does not affect the update rule of Xt, either.
Similarly, suppose Xt−1 remains the same for some t, then it is
easy to verify that

˜Lt =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 · · · 0 LH
t

...
. . .

...
...

0 · · · 0 LH
t

Lt · · · Lt 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ Cnc(n1+n2)×nc(n1+n2).

︸ ︷︷ ︸

nc copies

(Since n+ 1 = n1 + n2, we use n to replace n1 + n2 for con-
venience in all the sections of Appendix.) Moreover, ˜Lt has du-
plicated eigenvalues as |λ2i−1(˜Lt)| = |λ2i(˜Lt)| for 1 ≤ i ≤ r,
where λi(˜Lt) is the i-th largest eigenvalues (in absolute value)
of ˜Lt. Furthermore, let σi(Lt) be the i-th largest singular value
of Lt, from (19) we have

σi(Lt) =
1√
nc

|λ2i−1(˜Lt)| =
1√
nc

|λ2i(˜Lt)|. (23)

Similar results can be derived for ˜W t. From the definition of ˜H†

and the structure of ˜Lt, it is straightforward that Xt+1 returned
by lines 5-9 in Alg. 1 and (20) are equivalent. In conclusion, if
we start with the same initial point X0 = 0, the update rule in
(20) will generate the same Xt’s as those by lines 5-9 in Alg. 1,
and we also have PΩk,t

(˜St) = St.
Definition of H1,t, H2,t and Ht. From (20), we know that

˜Lt+1 = Q2k

(

˜HXt + p̂−1
˜HPΩk,t

(M −Xt − ˜St)
)

= Q2k

(

˜HXt + p̂−1
˜HPΩk,t

(X∗ + S∗ −Xt − ˜St)
)

=Q2k

(

˜HX∗ + ˜H(I − p̂−1PΩk,t
)(Xt + ˜St −X∗−S∗)

+ ˜H(S∗ − ˜St)
)

.

Let Ht = H1,t +H2,t, where

H1,t = ˜H(S∗ − ˜St),

H2,t = ˜H(I − p̂−1PΩk,t
)(Xt + ˜St −X∗ − S∗).

(24)

Then, we have

˜Lt = Q2k( ˜HX∗ +Ht) = Q2k( ˜HX∗ +H1,t +H2,t).

B. Key Lemma in Proving Theorem 1

We first introduce the key lemma in the whole proof.
Lemma 1 is presented to bound the �2-norm of eTi (Ht)

aZ by
the �2-norm of eTi Z for all 1 ≤ a ≤ log(n). Although Lemma 1

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on March 17,2023 at 19:20:28 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG AND WANG: CORRECTION OF CORRUPTED COLUMNS THROUGH FAST ROBUST HANKEL MATRIX COMPLETION 2589

is not directly used in proving Theorem 1, Lemma 1 is paramount
important in showing the recovery error of Xt decreases as t
increases that summarized in Lemma 6.

Lemma 15 in [9] provides a similar result for general matrix
but with a more complicated proof. Ref. [9] focused on bounding
all entries of eTi (H1,t +H2,t)

aZ, so Ref. [9] needed to write
the closed forms of all entries in (H1,t +H2,t)

a. The closed
forms are hard to determine, and several cases should be dis-
cussed separately. However, we will prove (25) by mathemat-
ical induction over a. Only two items, ‖eTi H1,t(Ht)

a−1Z‖2
and ‖eTi H2,t(Ht)

a−1Z‖2, need to be bounded in the inductive
step. Also, the conclusion of Lemma 1 in (25) can be extended
to general matrices, though Ht = H1,t +H2,t is the Hankel
matrix as defined in (24).

There are two lemmas used in the inductive steps of prov-
ing Lemma 1.5 Lemma 2 is built on the sparsity assumption
with respect to H1,t. Moreover, Lemma 2 is a special case that
a = 1 of Lemma 5 [23], and all the steps are straightforward
from [23]. However, instead of discussing a special U like in
[23], we consider a general matrix Z here. Lemma 3 provides
similar result for matrices with zero mean and bounded high mo-
ments, and it is used to bound H2,t. The technique in proving
Lemma 3 is similar as that of Lemma 9 [15]. Rather than bound-
ing each entry of eTi ( ˜HY )Z separately as [15], we bound the
�2 norm of eTi ( ˜HY )Z directly, which leads to a tighter bound
by a factor of r−1. The same trick is applied in [9] as well.

Lemma 1: Suppose the assumptions in Theorem 1. If we fur-
ther assume that Supp(˜St − S∗) ⊆ Supp(S∗), then for 1 ≤
a ≤ log(ncn) and any Z ∈ Cncn×l, with probability at least
1− nc log(ncn)

n2 , we have

max
i

‖eTi (Ht)
aZ‖2

≤ (C3βt log(n) + αncn‖H1,t‖∞)a max
i

‖eTi Z‖2,
(25)

where βt =
√

ncn
p̂ ‖Xt + ˜St −X − S‖∞ and C3 is a constant

that greater than e4.
Lemma 2: Assume each row and column of H ∈ Cncn×ncn

has at most s nonzero entries, then for any Z ∈ Cncn×l,

max
1≤i≤ncn

‖eTi HZ‖2 ≤ (s‖H‖∞) max
1≤j≤ncn

‖eTj Z‖2. (26)

Lemma 3: Assume each entry of Y ∈ Cnc×n is drawn inde-
pendently with

E(Yi,j) = 0, E(|Yi,j |k) ≤
1

ncn
(27)

for all 1 ≤ i ≤ nc, 1 ≤ j ≤ n and k ≥ 2. Then, for any Z ∈
Cncn×l, we have

max
1≤i≤ncn

‖eTi ( ˜HY )Z‖2 ≤ C3 log(n) max
1≤j≤ncn

‖eTj Z‖2, (28)

with probability 1− ncn
−3.

Proof of Lemma 1: From the assumption, we know each row
of S∗ has at most α fraction of nonzero entries. Since each row
of HS∗ is a subset of the corresponding row in S∗, then the

5The proof of these two lemmas are presented in the supplementary material.

number of nonzero entries in each row of HS∗ is bounded by
αn. Similarly, the nonzero entries in each column of HS∗ is
bounded by αncn. By the definition of ˜H in (18), we know that
each row or column of ˜HS∗ has at most αncn nonzero entries.
On the other hand, 1

βt
(I − p̂−1PΩk,t

)(Xt + ˜St −X∗ − S∗)
satisfies (27) in Lemma 3. The property of zero mean in (27) is
trivial. For bounded high moment, with k ≥ 2,

E

[

∣

∣

∣

∣

1

βt
(I − p−1PΩ)(Xt + ˜St −X∗ − S∗)

∣

∣

∣

∣

k
]

≤
(

p

ncn

) k
2
(

p(1− p−1)k + (1− p)
)

≤
(

p

ncn

) k
2

· 1

pk−1
≤ 1

ncn
.

(29)

Since Ht = H1,t +H2,t, we have
∥

∥eTi (Ht)
aZ
∥

∥

2
=
∥

∥eTi (H1,t +H2,t)(Ht)
a−1Z

∥

∥

2

≤
∥

∥eTi H1,t(Ht)
a−1Z

∥

∥

2
+
∥

∥eTi H2,t(Ht)
a−1Z

∥

∥

2
.

(30)

By Lemma 2, we have

∥

∥eTi H1,t(Ht)
a−1Z

∥

∥

2
≤ αncn

∥

∥eTi (Ht)
a−1Z

∥

∥

2
. (31)

By Lemma 3, with high probability, we have
∥

∥eTi H2,t(Ht)
a−1Z

∥

∥

2
≤ C3βt log(n)

∥

∥eTi (Ht)
a−1Z

∥

∥

2
.

(32)
Hence, with high probability, (31) and (32) suggests
∥

∥eTi (Ht)
aZ
∥

∥

2

≤
(

C3βt log(n) + αncn‖H1,t‖∞
) ∥

∥eTi (Ht)
a−1Z

∥

∥

2
.

(33)

Then, by applying (33) multiple times, with high probability we
have
∥

∥eTi (Ht)
aZ
∥

∥

2
≤
(

C3βt log(n) + αncn‖H1,t‖∞
)a ∥
∥eTi Z

∥

∥

2
.

Taking a union bound over all i completes the whole proof. �

C. Supporting Lemmas for Theorem 1

In the following lemmas, ˜St, Xt, Ht, ˜W t and ˜Lt are gen-
erated in the k-th outer loop unless otherwise specified. For
convenience, we use λ∗

i to denote λ2i−1( ˜HX∗), which is the
(2i− 1)-th largest eigenvalue (in absolute value) of ˜HX∗. Sim-
ilarly,λ(t)

i stands forλ2i−1(˜W t), which is the (2i− 1)-th largest
eigenvalue (in absolute value) of ˜W t.

Lemma 5 proves that the assumptions (38) and (40) are equiv-
alent. Lemma 6 shows the reduction of ‖Xt+1 −X∗‖∞ as t

increases. Moreover, the error bound of ‖˜St+1 − S∗‖∞ is given
in Lemma 7 based on the bound of ‖Xt+1 −X∗‖∞.

Lemma 4 (Weyl’s inequality): Suppose A, B ∈ Cn×n are
two symmetric matrices satisfying B = A+E. Then,

|λi(B)− λi(A)| ≤ ‖E‖2, 1 ≤ i ≤ n. (34)
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Lemma 5: Suppose the assumptions in Theorem 1 and

‖˜St − S∗‖∞ ≤ 7μ̃r̃

ncn

(

|λ∗
k+1|+

(

1

2

)t−1

|λ∗
k|
)

,

Supp(˜St − S∗) ⊆ Supp(S∗),

(35)

‖Xt −X∗‖∞ ≤ 2μ̃r̃

ncn

(

|λ∗
k+1|+

(

1

2

)t−1

|λ∗
k|
)

. (36)

With probability at least 1− ncn
−2, we have

‖Ht‖2 ≤ 1

60

(

|λ∗
k+1|+

(1

2

)t−1

|λ∗
k|
)

. (37)

provided that m̂ ≥ C4μ̃
2r̃2 log(n).

Lemma 6: Suppose the assumptions in Theorem 1 and

‖˜St − S‖∗∞ ≤ 8μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)t−1

|λ∗
k|
)

,

Supp(˜St) ⊆ Supp(S∗),

‖Xt −X∗‖∞ ≤ 2μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)t−1

|λ∗
k|
)

.

(38)

With probability at least 1− nc log
3(ncn)
n2 , we have

‖Xt+1 −X∗‖∞ ≤ 2μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)t

|λ∗
k|
)

(39)

provided that m̂ ≥ C5μ̃
2r̃2 log2(n).

Lemma 7: Suppose the assumptions in Theorem 1 and

‖Ht‖2 ≤ 1

60

(

|λ∗
k+1|+

(1

2

)t−1

|λ∗
k|
)

,

‖Xt+1 −X∗‖∞ ≤ 2μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)t

|λ∗
k|
)

.

(40)

Then, we have

‖˜St+1 − S∗‖∞ ≤ 7μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)t

|λ∗
k|
)

,

and Supp(˜St+1 − S∗) ⊆ Supp(S∗).

(41)

D. Proof of Theorem 1

The proof of Theorem 1 follows the similar framework es-
tablished in AltProj [23] by inductions over k and t. Here, we
are mainly focused on the inductions over k and t for (42). The
induction over k follows naturally for the selected T , which
is the iteration number of inner loop. The key part is the in-
duction over t, and the critical steps are verified by applying
Lemmas 5, 6 and 7 recursively. Lemmas 6 and 7 play the sim-
ilar roles as Lemmas 7 and 9 in [23]. However, we need an
extra lemma 5 to handle the additional item Ht caused by the
partial observation since AltProj only considers the case of full
observation.

Proof of Theorem 1: The proof is based on induction over t
and k for the following equation:

‖˜S(k)

t − S∗‖∞ ≤ 7μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)t−1

|λ∗
k|
)

,

Supp(˜S
(k)

t − S∗) ⊆ Supp(S∗),

‖X(k)
t −X∗‖∞ ≤ 2μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)t−1

|λ∗
k|
)

,

(42)

where we use X
(k)
t to represent the iteration Xt generated in

the k-th outer loop, similar for ˜S
(k)

t , H(k)
t and ξ

(k)
t .

Base Case: When k = 1 and t = 0, X(1)
0 is initialized as 0.

Since ˜HX∗ is μ̃-incoherent, we have

‖X∗ −X
(1)
0 ‖∞ = ‖X∗‖∞ = ‖ ˜HX∗‖∞ ≤ μ̃r̃

ncn
λ∗
1. (43)

Note that the hard thresholding ξ
(1)
0 is initialized as 4μ̃r̃

ncn
λ∗
1, for

˜S
(1)

0 , we consider three cases:

Case 1: If S∗
i,j = 0, then (˜S

(1)

0 )i,j = T
ξ
(1)
0

(X∗
i,j).

|X∗
i,j | ≤

μ̃r̃

ncn
λ∗
1 ≤ ξ

(1)
0 . (44)

Hence, (˜S
(1)

0 )i,j = 0.

Case 2: IfS∗
i,j �= 0 and |Mi,j | > ξ

(1)
0 , then (˜S

(1)

0 )i,j = S∗
i,j +

X∗
i,j .

∣

∣

(

˜S
(1)

0

)

i,j
− S∗

i,j

∣

∣ = |X∗
i,j | ≤

μ̃r̃

ncn
λ∗
1. (45)

Case 3: If S∗
i,j �= 0 and |Mi,j | ≤ ξ

(1)
0 , then (˜S

(1)

0 )i,j = 0.

∣

∣

(

˜S
(1)

0

)

i,j
− S∗

i,j

∣

∣ = |S∗
i,j | ≤ ξ

(1)
0 + |X∗

i,j | ≤
5μ̃r̃

ncn
λ∗
1. (46)

Hence, we have

‖˜S(1)

0 − S∗‖∞ ≤ 5μ̃r̃

ncn
λ∗
1,

Supp(˜S
(1)

0 − S∗) = Supp(S∗).

(47)

From (43) and (47), we know that (42) is true in the base case.

Induction over t: For any fixed k ≥ 0, suppose that ˜S
(k)

t and
X

(k)
t satisfy (42) for some t ≥ 0. Then, according to Lemma 6,

we have

‖X(k)
t+1 −X∗‖∞ ≤ 2μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)t

|λ∗
k|
)

. (48)

Note in Lemma 5, (42) suggests that

‖H(k)
t ‖2 ≤ 1

60

(

|λ∗
k+1|+

(1

2

)t−1

|λ∗
k|
)

, (49)

with high probability. By Lemma 7, (48) and (49) give that

‖˜S(k)

t+1 − S∗‖∞ ≤ 7μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)t

|λ∗
k|
)

,

Supp(˜S
(k)

t+1 − S∗) ⊆ Supp(S∗).

(50)

Hence, (42) is still valid for ˜S
(k)

t+1 and X
(k)
t+1.
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Induction over k: Suppose at kth stage, the initialization

X
(k)
0 and ˜S

(k)

0 satisfy (42), that is

‖˜S(k)

0 − S∗‖∞ ≤ 7μ̃r̃

ncn

(

|λ∗
k+1|+ 2|λ∗

k|
)

,

Supp(˜S
(k)

0 − S∗) ⊆ Supp(S∗),

and ‖X(k)
0 −X∗‖∞ ≤ 2μ̃r̃

ncn

(

|λ∗
k+1|+ 2|λ∗

k|
)

.

(51)

From the discussion of induction over t above, we know that,

‖˜S(k)

T − S∗‖∞ ≤ 7μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)T−1

|λ∗
k|
)

,

Supp(˜S
(k)

T − S∗) ⊆ Supp(S∗),

‖X(k)
T+1 −X∗‖∞ ≤ 2μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)T

|λ∗
k|
)

,

(52)

where T = log(4μ̃r̃|λ∗
1|/ε).

Then, from Lemmas 4 and 5, we have
∣

∣

∣|λ(T )
k+1| − |λ∗

k+1|
∣

∣

∣ ≤ ‖HT ‖2

≤ 1

60

(

|λ∗
k+1|+

(1

2

)T−1

|λ∗
k|
)

≤ 1

60

(

|λ∗
k+1|+

ε

2μ̃r̃

)

.

(53)

Now, we consider two cases,
Case 1: if η√

nc
λ
(T )
k+1 ≤ ε

ncn
, (53) implies that |λ∗

k+1| ≤ ε
2μ̃r̃ .

Hence,

‖X(k)
T+1 −X∗‖∞ ≤ 2μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)T

|λ∗
k|
)

≤ ε

ncn
.

(54)
Similar results can be established for ST . Therefore, X =
X

(k)
T+1 and S = S

(k)
T satisfy (15) in Theorem 1.

Case 2: if η√
nc
λ
(T )
k+1 > ε

ncn
, then (53) implies that |λ∗

k+1| ≥
ε

6μ̃r̃ . Hence,

‖X(k)
T+1 −X∗‖∞ ≤ 2μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)T

|λ∗
k|
)

≤ 2μ̃r̃

ncn

(

|λ∗
k+1|+

ε

4μ̃r̃

)

≤ 2μ̃r̃

ncn

(

|λ∗
k+2|+ 2|λ∗

k+1|
)

.

(55)

Suppose we have an extra step

˜S
(k)

T+1 = T
ξ
(k)
T+1

(M −XT+1).

From Lemma 7, we have

‖˜S(k)

T+1 − S∗‖∞ ≤ 7μ̃r̃

ncn

(

|λ∗
k+2|+ 2|λ∗

k+1|
)

,

Supp(˜S
(k)

T+1 − S∗) ⊆ Supp(S∗).

(56)

X
(k+1)
0 = X

(k)
T+1 is clear from Alg. 1, and it can also be verified

that ˜S
(k+1)

0 = ˜S
(k)

T+1. Hence, X(k+1)
0 and ˜S

(k+1)

0 satisfy (42)
as well.

Since ˜HX∗ is at most rank-2r, we will meet the terminating
condition anyway. If not, from case 2, the contradiction arises

0 = |λ∗
r+1| ≥

ε

6μ̃r̃
> 0. (57)

Hence, the algorithm has at most r · T iterations, and we need
the size of samplings satisfies

m ≥ rTm̂ ≥ max(C4, C5)μ
2c2sr

3 log2(n)T, (58)

where the requirement on m̂ comes from Lemmas 5 and 6. �

E. Proof of Lemma 5

We first bound the spectral norm ofH1,t andH2,t in (63) and
(61), respectively. Then, the theoretical bound will be directly
obtained by applying the triangle inequality in (36). Lemma 8 is
a direct application of the standard Bernstein inequality, which
shows that the operator p̂−1

˜HPΩk,t
can be close enough to its

mean ˜H. Though the definition of ˜H is different from that in
[33], (59) still holds and can be proved by following the same
framework in [33].

Lemma 8 ([33], Lemma 12): Let H2,t satisfy the definition
in (24). Then, with probability at least 1− ncn

−2, we have

‖H2,t‖2 ≤
√

16 log(n)βt (59)

provided that m̂ ≥ 16 log(n).
Proof of Lemma 5: Since Ht = H1,t +H2,t, we have

‖Ht‖2 ≤ ‖H1,t‖2 + ‖H2,t‖2.
From Lemma 8, we know that

‖H2,t‖2 ≤
√

16 log(n)βt

≤
√

16 log(n)

m̂
ncn‖Xt + St −X∗ − S∗‖∞.

(60)

From the assumption, we know that

‖Xt + St −X∗ − S∗‖∞ ≤ ‖Xt −X∗‖∞ + ‖St − S∗‖∞

≤ 9μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)t−1

|λ∗
k|
)

.

Hence, if m̂ ≥ C4μ̃
2r̃2 log(n) with C4 ≥ 48002, we have

‖H2,t‖2 ≤ 1

120

(

|λ∗
k+1|+

(1

2

)t−1

|λ∗
k|
)

. (61)

For ‖H1,t‖2, from the assumption, we know that each row or
column ofH1,t has at mostαncn nonzero entries. Then, for any
pair of unit vectors z, w∈ Cncn, we have
∣

∣zH1,tw
H
∣

∣

=

∣

∣

∣

∣

∣

∣

∑

i1,i2

zi1wi2(H1,t)i,j

∣

∣

∣

∣

∣

∣

≤
∑

i1,i2

|zi1wi2 | · |(H1,t)i,j |

≤ 1

2

∑

i1,i2

(

|zi1 |2 + |wi2 |2
)

|(H1,t)i,j | ≤ αncn‖H1,t‖∞

≤ 1

120

(

|λ∗
k+1|+

(1

2

)t−1

|λ∗
k|
)

(62)
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with α ≤ 1
840μ̃r̃ . Since (62) holds for any pair of unit vectors z

and w, we know that

‖H1,t‖2 ≤ 1

120

(

|λ∗
k+1|+

(1

2

)t−1

|λ∗
k|
)

, (63)

which completes the whole proof. �

F. Proof of Lemma 6

The proof of Lemma 6 is built upon exploiting the Taylor ex-
pansion of the eigenvectors of ˜HX∗, where similar proof struc-
tures are presented in both [23] and [15]. However, neither [23]
nor [15] considers missing data and bad data simultaneously,
so the perturbation item Ht in our paper is different since both
H1,t and H2,t are nonzero.

The following two lemmas are introduced to condense our
proof of Lemma 6. Lemma 9 illustrates the relationship between
the infinity norm and the spectral norm of a matrix, and it is a
direct corollary of the incoherence definition. (64) in Lemma 10
first appears in the proof of Lemma 7 [23] and later is summa-
rized in Lemma 13 [15].

Lemma 9 ([15], Lemma 12): Suppose A ∈ Cn×n is a sym-
metric matrix with rank r and incoherence μ, then for any sym-
metric matrix B ∈ Cn×n, we have

‖ABA−A‖∞ ≤ μr

n
‖ABA−A‖2.

Lemma 10 ([15], Lemma 13): Suppose A,E ∈ Cn×n are
two symmetric matrices. Let B = A+E and Qk(B) =
UλUH be the eigenvalue decomposition of the best rank-k ap-
proximation of B. Then, if λ−1 exists, we have

‖A−AUλ−1UHA‖2 ≤ 3‖E‖2 +
‖E‖22

|λk(B)| + |λk+1(B)|,

‖AUλ−aUHA‖2 ≤ |λk(B)|−a
(

‖E‖2 + |λk(B)|
)2

, ∀a ≥ 2.

(64)

Proof of Lemma 6: Since ‖Xt+1 −X∗‖∞ = ‖ ˜H†(˜Lt+1 −
˜HX∗)‖∞ ≤ ‖˜Lt+1 − ˜HX∗‖∞, it is sufficient to bound
‖˜Lt+1 − ˜HX∗‖∞. Recall that ˜Lt+1 = Q2k(˜W t) is a rank-2k

symmetric matrix, let ˜Lt+1 = ˜U˜λ ˜U
H

be the eigen decomposi-
tion of ˜Lt+1. On the other hand,

˜W t = ˜HX∗ +Ht, (65)

then for each eigenvector ũi of ˜Lt+1, we have

(

˜HX∗ +Ht

)

ũi = λi(˜W t)ũi.

For ∀ i ≤ k ≤ r, we know that |λ2i(˜W t)| = |λ2i−1(˜W t)| =
|λ(t)

i | ≥ |λ(t)
k |. From Lemma 5 and (65), we know that

|λ(t)
k − λ∗

k| ≤ ‖Ht‖2 ≤ 1

20
λ∗
k, (66)

that is

λ
(t)
k ≥ 19

20
λ∗
k > 0. (67)

Then dividing by λi(˜W t) on both sides,
(

I − Ht

λi(˜W t)

)

ũi =
1

λi(˜W t)
( ˜HX∗)ũi.

Then, with Taylor expansion,

ũi =

(

I − Ht

λi(˜W t)

)−1
( ˜HX∗)ũi

λi(˜W t)

=

⎛

⎝I +
Ht

λi(˜W t)
+

(

Ht

λi(˜W t)

)2

+ · · ·

⎞

⎠

( ˜HX∗)ũi

λi(˜W t)
.

Hence,

˜U˜λ ˜U
H − ˜HX∗

=

∞
∑

a=0

∞
∑

b=0

(

Ht

)a
( ˜HX∗) ˜U˜λ

−(a+b+1)
˜U

H
( ˜HX∗)

(

Ht

)b

− ˜HX∗

=
(

( ˜HX∗) ˜U˜λ
−1
˜U

H
( ˜HX∗)− ˜HX∗)

+
∑

a+b≥1

(

Ht

)a
( ˜HX∗) ˜U˜λ

−(a+b+1)
˜U

H
( ˜HX∗)

(

Ht

)b
.

Then,

‖ ˜U˜λ ˜UH − ˜HX∗‖∞

≤ ‖( ˜HX∗) ˜U˜λ
−1
˜U

H
( ˜HX∗)− ˜HX∗‖∞

+
∑

a+b≥1

‖
(

Ht

)a
( ˜HX∗) ˜U˜λ

−(a+b+1)
˜U

H
( ˜HX∗)

(

Ht

)b‖∞

:= I0 +
∑

a+b≥1

Ia,b.

For I0, since ˜W t − ˜HX∗ = Ht, we have

I0
(a)

≤ μ̃r̃

ncn
‖( ˜HX∗) ˜U˜λ

−1
˜U

H
( ˜HX∗)− ˜HX∗‖2

(b)

≤ μ̃r̃

ncn

(

3‖Ht‖2 +
‖Ht‖22
|λ(t)

k |
+ |λ(t)

k+1|
)

.

(68)

where (a) holds due to Lemma 9, and (b) comes from the first
inequality in Lemma 10.

Again from ˜W t − ˜HX∗ = Ht, Lemma 4 tells us that

|λ(t)
k+1| ≤ ‖Ht‖2 + |λ∗

k+1|. (69)

On the other hand, from (67), we have

‖Ht‖2
λ
(t)
k

≤ 1/20

1− 1/20
≤ 1

19
. (70)

Then,

I0 ≤ μ̃r̃

ncn

(

5‖Ht‖2 + |λ∗
k+1|
)

. (71)
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For Ia,b and a+ b ≤ log(ncn), we have

Ia,b

= max
i1,i2

∣

∣

∣eTi1
(

Ht

)a
( ˜HX∗) ˜U˜λ

−(a+b+1)
˜U

H
( ˜HX∗)

(

Ht

)b
ei2

∣

∣

∣

≤ max
i1,i2

‖eTi1
(

Ht

)a
˜U‖2‖( ˜HX∗) ˜U˜λ

−(a+b+1)
˜U

H
( ˜HX∗)‖2

· ‖eTi2
(

Ht

)b
˜U‖2

≤ (C3βt log(n) + αncn‖H1,t‖∞)a+b

·max
i1,i2

‖eTi1 ˜U‖2‖eTi2 ˜U‖2‖( ˜HX∗) ˜U˜λ
−(a+b+1)

˜U
H
( ˜HX∗)‖2

≤ μ̃r̃

ncn
(C3βt log(n) + αncn‖H1,t‖∞)a+b

· ‖( ˜HX∗) ˜U˜λ
−(a+b+1)

˜U
H
( ˜HX∗)‖2

(c)

≤ μ̃r̃

ncn

(

1

60
νt

)a+b

‖( ˜HX∗) ˜U˜λ
−(a+b+1)

˜U
H
( ˜HX∗)‖2

with high probability, where νt = |λ∗
k+1|+

(

1
2

)t−1

|λ∗
k|. More-

over, (c) holds since

C3βt log(n) ≤
1

120
νt, αncn‖H1,t‖∞ ≤ 1

120
νt (72)

provided that m̂ ≥ C5μ̃
2r̃2 log2(n) andα ≤ 1

840μ̃r̃ , whereC5 =

(1200C3)
2.

When a+ b ≥ log(ncn), we have

Ia,b

= max
i1,i2

|eTi1
(

Ht

)a
( ˜HX∗) ˜U˜λ

−(a+b+1)
˜U

H
( ˜HX∗)

(

Ht

)b
ei2 |

≤ max
i1,i2

‖eTi1
(

Ht

)a
˜U‖2‖( ˜HX∗) ˜U˜λ

−(a+b+1)
˜U

H
( ˜HX∗)‖2

· ‖eTi2
(

Ht

)b
˜U‖2

≤ ‖Ht‖a+b
2 ‖( ˜HX∗) ˜U˜λ

−(a+b+1)
˜U

H
( ˜HX∗)‖2

(d)

≤
(

1

60
νt

)a+b

‖Ht‖a+b
2 ‖( ˜HX∗) ˜U˜λ

−(a+b+1)
˜U

H
( ˜HX∗)‖2

≤
(

1

2
· 1
30

νt

)a+b

‖Ht‖a+b
2 ‖( ˜HX∗) ˜U˜λ

−(a+b+1)
˜U

H
( ˜HX∗)‖2

≤ μ̃r̃

ncn

(

1

30
νt

)a+b

‖( ˜HX∗) ˜U˜λ
−(a+b+1)

˜U
H
( ˜HX∗)‖2,

where (d) holds from Lemma 5.
Next, using Lemma 10, we have

‖( ˜HX∗) ˜U˜λ
−(a+b+1)

˜U
H
( ˜HX∗)‖2

≤ |λ(t)
k |−(a+b−1)

(

1 +
‖Ht‖2
|λ(t)

k |

)2

≤ 3|λ(t)
k |−(a+b−1),

(73)

where the last inequality comes from (70).

Since νt ≤ 3|λ∗
k| for t ≥ 0, we have

∑

a+b≥1

Ia,b ≤
∑

a+b≥1

μ̃r̃

10ncn

(

30|λ(t)
k |

νt

)−(a+b−1)

νt

≤ μ̃r̃

2ncn
νt.

(74)

Hence, (71) and (74) suggest

‖ ˜U˜λ ˜U − ˜HX∗‖∞ ≤ μ̃r̃

ncn

(

5‖Ht‖2 + |λ∗
k+1|
)

+
μ̃r̃

2ncn
νt

≤ μ̃r̃

ncn

(

νt + |λ∗
k+1|
)

≤ 2μ̃r̃

ncn

(

|λ∗
k+1|+

(1

2

)t

|λ∗
k|
)

,

which completes the whole proof. �
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