Motivation: Graph Structured Data

Graph neural networks = Graph structured data.

The output of each node depends
on the input of the node and its
neighbor nodes;

hidden layers

(b) Protein-Protein (c) Internet of Thing (loT)

(2) Social Networks Interaction (PPI) Networks ~ Networks

Figure 1: Sampling applications in (a) social networks, (2) PPI
Networks, and (3) loT networks.
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Motivation: Data & Computation Inefficiency of GNNs

@ Sample complexity highly depends on the degree of the nodes/graph.

— Sample complexity is proved to be a quadratic function of the degree of the graph.

@ “Neighborhood explosion” during aggregation stages + High DNN computation.
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Figure 2: Phrase transition of number of samples against the degree of graph [Zhang et al. ICML'20]

Shuai Zhang (RPI)

Joint Edge-Model Sparse Learning ICLR'23

2/16



Motivation: Data & Computation Inefficiency of GNNs

@ Sample complexity highly depends on the degree of the nodes/graph.
— Sample complexity is proved to be a quadratic function of the degree of the graph.

@ “Neighborhood explosion” during aggregation stages + High DNN computation.

@ The computational cost of a 2-layer GNN with ~ 230 thousand nodes can be 2X as a
50-layer CNN with ~ 14 million images.
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Background: Graph Topology Sampling

@ Graph topology sampling: edge sampling, node sampling, sub-graph clustering.
@ Why sampling? To reduce sample complexity & memory costs.

= O w

GraphSage [Hamilton et al.17] FastGCN [Chen et al.18] Cluster-GCN [Chiang et al.19]
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Background: Neural Network Pruning

@ Remove (unnecessary) parameters of the neural networks.

@ Reduce compute cost, memory cost, energy consumption, and carbon footprint.

Large Neural Small Neural
Networks Networks
Reduce
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Background: Pruning in Neural Networks

Sparse neural networks:

@ 90% of the parameters can be pruned.

@ Reduce computational cost by 5x.

Table 1: Network pruning makes neural networks
sparse. Source from Han et al.15

In addition, a good pruned neural network:
@ Improved test accuracy

o Faster convergence rate

Table 2: Improved test accuracy of training
pruned network. Source: Adapted from , [Chen
et al.20], [Chen et al.22].

N # Parameters MACs Neural Accuracy (%)
Network |Before Pruning| After Pruning | Reduction | Reduction Network Dataset Before Pruning | After Pruning
Alexnet 61M 6.7M 9X 3X LetNet-5 MINST 98.05 98.41
VGG-16 138M 10.3M 12X 5X Conv-6 Cifar-10 77.52 80.02
GoogleNet ™ 2.0M 35X 5 X ResNet-50 Cifar-10 94.31 94.82
ResNet50 26M 7.4TM 34X 6.3 X ResGCN-28 Cora 80.02 81.88
SqueezeNet M 0.38M 32X 35X BERT MNLI 82.39 83.08
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Problem Formulation: Node Classification

o Node feature x, € RY & Node label y, € {+1,—1}.
e Given partial labels of {y, },ep and all input feature {x, } ey, the goal is to predict the

labels for all nodes v € V/D.
— D is a subset of nodes set V.

.

Xy >
()

@ rositive label

@ Negative label

O Unknown label
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Algorithm: Joint Topology-Model Sparsification

O (Initialization.) Initialize wy as random Gaussian and by uniformly from {+1, —1}.

:Graph-structured: Aggregator \ Hidden Layer !
. data / function ST s s om--e-

1 Edg Model \
V parsification sparsification O—°
A >
Figure 2: An illustration of the joint topology-model sparsification.
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Algorithm: Joint Topology-Model Sparsification

O (Initialization.) Initialize wy as random Gaussian and by uniformly from {+1, —1}.
@ (Edge sampling.) For each node, aggregate a subset of neighbor nodes via (randomly)
edge sampling.

Figure 2: The illustration of edge sampling
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Algorithm: Joint Topology-Model Sparsification

O (Initialization.) Initialize wy as random Gaussian and by uniformly from {+1,—1}.

@ (Edge sampling.) For each node, aggregate a subset of neighbor nodes via (randomly)
edge sampling.

© (Pre-training.) Update wy through gradient descent algorithm based on the sub-graph.

@ (Pruning.) Pruning $3 fraction of neurons with the smallest magnitude.

@ (Re-training.) Update wy through gradient descent algorithm.

) Pruning: remove neurons
Pre-train with smallest magnitudes

ﬁ

Dense network Pre-trained network Pruned network Learned network

Figure 2: The illustration of magnitude-based neuron pruning
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Related Works: graph sampling & pruned network

Only separate theoretical explanations for either graph sampling or network pruning.

@ Pruned neural networks are slightly worse than the original dense network in terms of the
expressive power and training accuracy [Arora et al.18, Baykal et al.18, Ben et al.20, Malach et
al.20].

@ [Zhang et.al NeurlPS'21] characterizes the benefits of training "winning tickets” but in
feedforward neural networks and cannot explain how to find " winning ticket”.

@ Focus on the expressive power of sampled graphs [Hamilton et al.17; Cong et al.21; Chen et al.18;
Zou et al.19].

@ [Li et al.22] shows improved generalization using graph sampling, but assuming the adjacency
matrices of the sampled and original graph are similar.
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Related Works: graph sampling & pruned network

Only separate theoretical explanations for either graph sampling or network pruning.

@ Pruned neural networks are slightly worse than the original dense network in terms of the
expressive power and training accuracy [Arora et al.18, Baykal et al.18, Ben et al.20, Malach et
al.20].

@ [Zhang et.al NeurlPS'21] characterizes the benefits of training "winning tickets” but in
feedforward neural networks and cannot explain how to find " winning ticket”.

@ Focus on the expressive power of sampled graphs [Hamilton et al.17; Cong et al.21; Chen et al.18;
Zou et al.19].

@ [Li et al.22] shows improved generalization using graph sampling, but assuming the adjacency
matrices of the sampled and original graph are similar.

No theoretical guarantees for the joint model-topology sparsification.

Shuai Zhang (RPI) Joint Edge-Model Sparse Learning ICLR'23 8/16



Takeaways of Theoretical Findings

© Edge sampling reduces the sample complexity.

@ Magnitude-based neuron pruning reduces the sample complexity and accelerates the
convergence rate.

© Edge and model sparsification is a win-win strategy.
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Assumptions: Data Model

@ Nodes connected to each other tend to have the same label.

@ Some nodes have a stronger influence than the other nodes.
— Important nodes v.s. Unimportant nodes
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Influence of Edge Sampling

@ (Pro.) Sample complexity is a quadratic function of the node degree, indicating that edge
sampling reduces the sample complexity.
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Influence of Edge Sampling

@ (Pro.) Sample complexity is a quadratic function of the node degree, indicating that edge
sampling reduces the sample complexity.
— Sample complexity N = ©(r?). (r: number of sampled neighbors for each node)
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Influence of Edge Sampling

@ (Pro.) Sample complexity is a quadratic function of the node degree, indicating that edge

sampling reduces the sample complexity.
— Sample complexity N = ©(r?). (r: number of sampled neighbors for each node)

@ (Con.) Edge sampling leads to possible labeling information lost, indicating an increased
sample complexity and iteration number for convergence.

Important node (red node) Important node is NOT
is sampled =3 sampled o
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Influence of Edge Sampling

@ (Pro.) Sample complexity is a quadratic function of the node degree, indicating that edge

sampling reduces the sample complexity.
— Sample complexity N = ©(r?). (r: number of sampled neighbors for each node)

@ (Con.) Edge sampling leads to possible labeling information lost, indicating an increased
sample complexity and iteration number for convergence.
— Sample complexity N = ©(a~?), Number of iterations T = ©(a™1).
— « average rate of at least one important node is sampled.

Important node (red node) Important node is NOT
is sampled =3 sampled o

Shuai Zhang (RPI) Joint Edge-Model Sparse Learning ICLR'23 11/16




Influence of Edge Sampling

Uniform sampling can save sample complexity by a faction of 1/c.

@ c is the average number of important nodes (red nodes in Figure 3) in the neighbor.

—1 _2-r —> _3-r _3
,C = a = R,C— C(—T,C—

Figure 3: Illustration of different a and c in different graphs
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Benefits from Magnitude-based Model Pruning

Two types of neuron weights:

@ “Good” neuron: p
— small angle — learns features of important i(
nodes (class-relevant features). 100

. . + Good neurons
— have large magnitudes. it ¥

@ “Bad” neuron:
— large angle — learns features of unimportant
nodes (class-irrelevant features).
— have small magnitudes.

50

Bad neurons

Magnitude of
neuron weights

0 /2
Angle between neuron weights
and class-relevant features

Figure 4: Distribution of the neuron weights.
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Benefits from Magnitude-based Model Pruning

Two types of neuron weights:

@ “Good” neuron: P
— small angle — learns features of important i(
nodes (class-relevant features). Looi B

. . + Good neurons
— have large magnitudes. :

@ “Bad” neuron:
— large angle — learns features of unimportant
nodes (class-irrelevant features).
— have small magnitudes.

50

Bad neurons

Magnitude of
neuron weights

0 /2
Proposition 1 Angle between neuron weights
and class-relevant features

For a “good” neuron with weights W; and

“bad” neuron with weights W, we have Figure 4: Distribution of the neuron weights.
WA — [Wa|| > 1—©(1/VN).
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Benefits from Model Pruning

The initial weights determine whether a neuron

is “good” or "bad”.

Proposition 2

A “good” neuron weight at initialization is still
“good” at next iterations.

Magnitude-based pruning
finds the pruned network

] Rewind initialization ‘ ] Different Initialization ‘

s

] Improved performance \ ] Reduced performance \
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Benefits from Model Pruning

The initial weights determine whether a neuron A numerical justification on a shallow
is “good” or "bad”. neural network.
Proposition 2 160 "€ Rewinding initialization
A “ e e e . . il @ =¥-Random initialization
good neuron weignht at initialization Is sti 5 140/ - - -Baseline
“good" at next iterations. ‘g
: : = 100
Magnitude-based pruning g
finds the pruned network £
S 60
¢ =
] Rewind initialization ‘ ]Different Initialization‘ 0 02 04 06 (}%
=2 s Pruning rate of neurons
] Improved performance \ ] Reduced performance \ Figure 5: Number of iterations against the

pruning rate.
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Numerical Justification
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Figure 6: Performance at different model and edge sparsity on
Citeseer node classification.
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Proof Sketchy

O A sufficient large fraction of neurons is “good
neuron” .

Wk!bk =1

P/ps

WDy > Wip
for any otherp € P

Figure 7: Example of a “good” neuron
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Proof Sketchy

@ A sufficient large fraction of neurons is “good

neuron . p E:PN

@ "“Good neurons”: increase along the direction of w(©
class-relevant features; zigzag in other directions. \ w® @
\ N

\ AN /

W w®
b.orp-

Figure 7: Illustration of iterations of
“good” neurons
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Proof Sketchy

@ A sufficient large fraction of neurons is “good
neuron” .

@ "“Good neurons”: increase along the direction of
class-relevant features; zigzag in other directions.

© “Bad neuron”: increase slowly along any direction
with a sufficiently large number of samples.
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Figure 7: Illustration of iterations of
“bad” neurons
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Proof Sketchy

- . - p EPy
@ A sufficient large fraction of neurons is “good A Gradient from D,

”
neuron . A
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© “Bad neuron”: increase slowly along any direction
with a sufficiently large number of samples.

-
@ With a sufficiently large number of iterations, the | p.orp_

output of the graph neural network is determined
by the “good neurons” ( and the class-relevant
features).

Figure 7: Illustration of iterations of
“bad” neurons
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