
Motivation: Graph Structured Data

Graph neural networks =⇒ Graph structured data.

The output of each node depends
on the input of the node and its
neighbor nodes;
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Figure 1: Sampling applications in (a) social networks, (2) PPI
Networks, and (3) IoT networks.
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Motivation: Data & Computation Inefficiency of GNNs

Sample complexity highly depends on the degree of the nodes/graph.
– Sample complexity is proved to be a quadratic function of the degree of the graph.

“Neighborhood explosion” during aggregation stages + High DNN computation.

The computational cost of a 2-layer GNN with ∼ 230 thousand nodes can be 2X as a
50-layer CNN with ∼ 14 million images.
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Figure 2: Phrase transition of number of samples against the degree of graph [Zhang et al. ICML’20]
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Background: Graph Topology Sampling

Graph topology sampling: edge sampling, node sampling, sub-graph clustering.

Why sampling? To reduce sample complexity & memory costs.

GraphSage [Hamilton et al.17] FastGCN [Chen et al.18] Cluster-GCN [Chiang et al.19]
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Background: Neural Network Pruning

Remove (unnecessary) parameters of the neural networks.

Reduce compute cost, memory cost, energy consumption, and carbon footprint.

Large Neural 
Networks

Small Neural 
Networks

Reduce
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Background: Pruning in Neural Networks

Sparse neural networks:

90% of the parameters can be pruned.

Reduce computational cost by 5×.

Table 1: Network pruning makes neural networks
sparse. Source from Han et al.15

Neural 
Network

# Parameters MACs Neural 
Network Dataset

Accuracy (%)

Before Pruning After Pruning Reduction Reduction Before Pruning After Pruning

Alexnet 61M 6.7M 9 X 3 X LetNet-5 MINST 98.05 98.41
VGG-16 138M 10.3M 12 X 5 X Conv-6 Cifar-10 77.52 80.02

GoogleNet 7M 2.0M 3.5 X 5 X ResNet-50 Cifar-10 94.31 94.82
ResNet50 26M 7.47M 3.4 X 6.3 X ResGCN-28 Cora 80.02 81.88

SqueezeNet 1M 0.38M 3.2 X 3.5 X BERT MNLI 82.39 83.08

In addition, a good pruned neural network:

Improved test accuracy

Faster convergence rate

Table 2: Improved test accuracy of training
pruned network. Source: Adapted from , [Chen
et al.20], [Chen et al.22].
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Network

# Parameters MACs Neural 
Network Dataset
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Problem Formulation: Node Classification

Node feature xv ∈ Rd & Node label yv ∈ {+1,−1}.
Given partial labels of {yv}v∈D and all input feature {xv}v∈V , the goal is to predict the
labels for all nodes v ∈ V/D.
– D is a subset of nodes set V.

𝒙𝒙𝑣𝑣

Positive label
Negative label
Unknown label
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Algorithm: Joint Topology-Model Sparsification

1 (Initialization.) Initialize wk as random Gaussian and bk uniformly from {+1,−1}.

2 (Edge sampling.) For each node, aggregate a subset of neighbor nodes via (randomly)
edge sampling.

3 (Pre-training.) Update wk through gradient descent algorithm based on the sub-graph.
4 (Pruning.) Pruning β fraction of neurons with the smallest magnitude.
5 (Re-training.) Update wk through gradient descent algorithm.

AGG

Output 
Layer

Hidden LayerAggregator 
function

Graph-structured 
data

Model 
sparsification

Edge 
sparsification

Figure 2: An illustration of the joint topology-model sparsification.
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Figure 2: The illustration of magnitude-based neuron pruning
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Related Works: graph sampling & pruned network

Only separate theoretical explanations for either graph sampling or network pruning.

Pruned neural networks are slightly worse than the original dense network in terms of the
expressive power and training accuracy [Arora et al.18, Baykal et al.18, Ben et al.20, Malach et
al.20].

[Zhang et.al NeurIPS’21] characterizes the benefits of training ”winning tickets” but in
feedforward neural networks and cannot explain how to find ”winning ticket”.

Focus on the expressive power of sampled graphs [Hamilton et al.17; Cong et al.21; Chen et al.18;
Zou et al.19].

[Li et al.22] shows improved generalization using graph sampling, but assuming the adjacency
matrices of the sampled and original graph are similar.

No theoretical guarantees for the joint model-topology sparsification.
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Takeaways of Theoretical Findings

1 Edge sampling reduces the sample complexity.

2 Magnitude-based neuron pruning reduces the sample complexity and accelerates the
convergence rate.

3 Edge and model sparsification is a win-win strategy.
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Assumptions: Data Model

1 Nodes connected to each other tend to have the same label.

2 Some nodes have a stronger influence than the other nodes.
– Important nodes v.s. Unimportant nodes

Social Network Citation Network

Shuai Zhang (RPI) Joint Edge-Model Sparse Learning ICLR’23 10 / 16



Assumptions: Data Model

1 Nodes connected to each other tend to have the same label.

2 Some nodes have a stronger influence than the other nodes.
– Important nodes v.s. Unimportant nodes

Social Network Citation Network

Shuai Zhang (RPI) Joint Edge-Model Sparse Learning ICLR’23 10 / 16



Influence of Edge Sampling

(Pro.) Sample complexity is a quadratic function of the node degree, indicating that edge
sampling reduces the sample complexity.

– Sample complexity N = Θ(r2). (r : number of sampled neighbors for each node)

(Con.) Edge sampling leads to possible labeling information lost, indicating an increased
sample complexity and iteration number for convergence.

– Sample complexity N = Θ(α−2), Number of iterations T = Θ(α−1).
– α: average rate of at least one important node is sampled.
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Influence of Edge Sampling

Uniform sampling can save sample complexity by a faction of 1/c .

c is the average number of important nodes (red nodes in Figure 3) in the neighbor.

𝛼𝛼 =
2 � 𝑟𝑟
𝑅𝑅

, 𝑐𝑐 = 2 𝛼𝛼 =
3 � 𝑟𝑟
𝑅𝑅

, 𝑐𝑐 = 3𝛼𝛼 =
𝑟𝑟
𝑅𝑅

, 𝑐𝑐 = 1

Figure 3: Illustration of different α and c in different graphs
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Benefits from Magnitude-based Model Pruning

Two types of neuron weights:

“Good” neuron:
– small angle −→ learns features of important
nodes (class-relevant features).
– have large magnitudes.

“Bad” neuron:
– large angle −→ learns features of unimportant
nodes (class-irrelevant features).
– have small magnitudes.

Proposition 1

For a “good” neuron with weights W1 and
“bad” neuron with weights W2, we have

∥W1∥ − ∥W2∥ ≥ 1−Θ(1/
√
N).

0 /2
0

50

100 Good neurons

Bad neurons

features

Figure 4: Distribution of the neuron weights.
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Benefits from Model Pruning

The initial weights determine whether a neuron
is “good” or ”bad”.

Proposition 2

A “good” neuron weight at initialization is still
“good” at next iterations.

Magnitude-based pruning 
finds the pruned network

Rewind initialization Different Initialization

Improved performance Reduced performance

A numerical justification on a shallow
neural network.
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Figure 5: Number of iterations against the
pruning rate.
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Numerical Justification

Our joint topology-model
sparsification significantly
improves test accuracy over
random pruning.

Save the computational cost
by up to 18×.

Figure 6: Performance at different model and edge sparsity on
Citeseer node classification.
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Proof Sketchy

1 A sufficient large fraction of neurons is “good
neuron”.

2 “Good neurons”: increase along the direction of
class-relevant features; zigzag in other directions.

3 “Bad neuron”: increase slowly along any direction
with a sufficiently large number of samples.

4 With a sufficiently large number of iterations, the
output of the graph neural network is determined
by the “good neurons” ( and the class-relevant
features).

𝒘𝒘𝑘𝑘 , 𝑏𝑏𝑘𝑘 = 1

𝑝𝑝+

𝒫𝒫/𝑝𝑝+
𝒘𝒘𝑘𝑘
𝑇𝑇𝑝𝑝+ > 𝒘𝒘𝑘𝑘

𝑇𝑇𝑝𝑝
for any other p ∈ 𝒫𝒫

Figure 7: Example of a “good” neuron
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