Matrix Completion

@ Given partial and corrupted observation M, decomposing it into the sum of two matrices:
(1) Low-rank matrix X*, and (2) Sparse error S*;

i — +
m .

Observation M Low-rank matrix Y* Sparse error S*

@ Optimization problem:
min:  [[Po(M - X - S)|7

)

s.t. rank(X) <r, and ||S|lo <s.
Non-convexity comes from the non-convex constraints (rank and ¢

norm).
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Column-wise Data Lost/Corruption

@ Recovery needs at least r observations in
each column;

1 Low-rank space

[ Setof Po(Y —M) =0

- |ntersection region

e Filling any linear combination of other
columns would not change the rank;

rank
—//
yi — Zy"
sl [

» Gradient direction
Ground truth
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Structured Hankel matrix

@ Conduct low-rank matrix completion algorithms on the structured Hankel matrix;

(Temporal) correlation

across the columns '6
o
c
3
:> >
,7J-A
Original data matrix
Y
(@]
o
c
3
=]

Structured Hankel matrix , (Y)
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Structured Hankel Matrix

@ Video Processing [Ding, et al.07]

Video frames

frames

@ Image Super Resolution [Chen et al.14]

Shuai Zhang (RPI)

@ Magnetic Resonance Imaging

[Ongie, et al.16], [Zhang, et al.20]
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@ System ldentification [Fazel, et al.13]
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Robust Low-rank Hankel Matrix Completion

@ Objective: given partial observation M in the observation set €2, decompose it into the
sum of two matrices: (1) A low-rank Hankel matrix Y*, and (2) Sparse error §*.

@ Solve the non-convex optimization problem:
min : Po(M —Y — S)|2
Y"'; [Pa( NIE

st.  rank(He(Y)) <r, and |[|S|o<s.

Pa(Zij) = Zij if the index (i, /) € Q and 0 otherwise.
IS|lo is the number of nonzero entries in S.
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Existing Methods with Guarantees

@ Single-signal Hankel matrix completion, i.e., S =0, m = 1.
> Hankel matrix nuclear norm relaxation [Fazel et al.10], [Chen et al.14].
> FIHT (non-convex method) through projected gradient descent [Cai et al.17].
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Existing Methods with Guarantees

@ Single-signal Hankel matrix completion, i.e., S =0, m=1.
> Hankel matrix nuclear norm relaxation [Fazel et al.10], [Chen et al.14].
> FIHT (non-convex method) through projected gradient descent [Cai et al.17].

@ Low-rank matrix recovery, i.e., Kk = 1.
> ADMM (convex approach) through nuclear norm relaxation [Candes et al.11].
> SVT (convex approach) through soft-thresholding on the singular values [Cai et al.10].
> R-RMC (non-convex approaches) through alternative projection [Cherapanamjeri et al.16]

Low-rank methods cannot handle fully lost/corrupted columns.
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Our Algorithm: Structured Alternating Projections (SAP)

[ Low-rank Hankel matrix ~—— Gradient direction

/1 Sparse matrix —_— Projec(ionlolom_/—rank
Hankel matrix
X Ground truth ¥* ~ ====- Hard thresholding
(©)
Y o\'
(S1) Update along the gradient descent: g

gD — YO L p1py (M- YO _s(0).

Setof Po(M —¥ —S@) =0
s@®

[Zhang et al. JSTSP’18], [Zhang et al. TSP'19]
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Our Algorithm: Structured Alternating Projections (SAP)

[ Low-rank Hankel matrix ~—— Gradient direction

[ Sparse matrix —_— PrOiacatinir;m;\:\&rank
X Ground truth Y*  ====- Hard thresholding
(S2) Project the updated point to the Y,
low-rank Hankel matrix space:
g(l) Yy
Y(éJrl) _ HLQr(Hh(g([+1)))
Hi: the inverse of H,. Setof Po(M —¥ —S®) =0
Q,: the best rank-r approximation. s©®

[Zhang et al. JSTSP’18], [Zhang et al. TSP'19]
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Our Algorithm: Structured Alternating Projections (SAP)

(S3) Update the error matrix via hard
thresholding:

1\¢
f(“—l) = UrJrl(HNg(Z)) + (7) O'r(,HNg(Z))'

2

ox(-): the k-th largest singular value.

Z, if |Z] > &.
0, otherwise.

Te(2) =

7 Sparse matrix —_—

X Ground truth Y*  ====-

[ Low-rank Hankel matrix ~—— Gradient direction

Projection to low-rank
Hankel matrix

Hard thresholding

[Zhang et al. JSTSP’18], [Zhang et al. TSP'19]
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Our Algorithm: Structured Alternating Projections (SAP)

[ Low-rank Hankel matrix ~—— Gradient direction

(S1) Update along the gradient descent:

g(z+1) — Y(f) *Pil’PQ ( M— Y(f) o S(é) ) [ Sparse matrix —_— PrOiaca!inir;ﬂ;\:\&rank
X Ground truth ¥*  ====- Hard thresholding

(S2) Project to the low-rank Hankel matrix
space:
Y = 1 Q (M (g 1Y),

(S3) Update the error matrix via hard Setof Po(M —¥ —sM) =0

thresholding:
1\ ¢
5(“_1) = Ur+1(/ng(€)) + (5) Ur(/ng(e))'
S = Teern (Po(M — YY),

[Zhang et al. JISTSP’18], [Zhang et al. TSP'19]
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Our Algorithm: Structured Alternating Projections (SAP)

(S1) Update along the gradient descent:
g — YO _p=1p (m— YO _g),

(S2) Project to the low-rank Hankel matrix
space:
Y = 1 Q (M (g 1Y),

(S3) Update the error matrix via hard
thresholding:

1\ %
6 = 0,1 (Mg ) + (3) or(H:8).
s+ Teern (Pa(M — y(e+1)))).

[Zhang et al. JSTSP'18], [Zhang et al. TSP'19]

[ Low-rank Hankel matrix ~—— Gradient direction

I:| Sparse matrix ——p Projection to low-rank
Hankel matrix

X Ground truth y* ~ ===== Hard thresholding
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Comparison with Existing Theoretical Results

A m x n (m < n) matrix with (Hankel) rank r.

Low-rank Matrix Recovery Hankel Matrix Completion Multi-channel
Nuclear norm FTHT Hankel Matrix
R-RMC
SVT  (convex) (non-convex) (convex) (non- Recovery
[Cai.(10)] [Cherapanamjeri.(17)] [Chen&Chi.(14), convex) (SAP)
panarmyer:. Fazel.(10)] [Cai.(17)]
Corruption Yes No Yes
. No : Yes, up to 1/r
Column-wise . Not applicable '
lost /corruption (Yes on the Hankel matrix) fraction.
Number of rnlogn rinlogn r?logn r3logn r3logn
observations
rn® /e r>nlog(1l/e)
Computational | (rn3/e on Han- | (r3n?log(1/e)  on r’n/e r3nlog(1/e) r3nlog(1/e)
complexity kel) Hankel)

[Zhang et al. JSTSP'18], [Zhang et al. TSP'19]
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Theoretical Results !

Suppose the following conditions hold:
(1) §* contains at most O(1/r) of fully corrupted columns;
(2) required observations (random sampling): |Q| > ©(r?log t log(1/¢)).

Then, with high probability,

YD — Y| < e with L = log(1/e).

@ SAP can tolerate up to a constant fraction of fully corrupted or lost columns; the conventional
matrix completion algorithms fails with only one fully corrupted or lost column;

@ The required number of samples is ©(r> log n);

@ The algorithm enjoys a linear convergence rate, and the computational complexity is
O(r?nlog nlog(1/¢)).

1[Zhang et al. JSTSP’18], [Zhang et al. TSP’'19]
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Evaluation on Synthetic Data

@ Data model: m signals, each is a weighted sum of r
sinusoids.

,
Yie = dyje Tt JCTitot,
i=1
@ Y isin 20 x 600, and r is 15.

@ Data loss model: Time
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OX XX XO
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s[ouuey)

<
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3

—¥—SVT (convex-approach)

SVT on Hankel matrices
={~ FIHT (non-convex approach)

Proposed Algorithm
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Recovery error
=
o
£

Figure 14: The recovery error of
recovered data with simultaneous and
consecutive data loss.
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Simulation Results: Synthetic Data

The computational time for recovering a 1200 S N -
. . . —_ Proposed Algorithm a
matrix in 20 x t; for achieving a recovery error %1000’ 5. R-RMC on Hankel matrix
. . (Non-convex)
g, the computational time of E 800 |  ADMM on Hankel matrix|
= (Convex) E!
. L. 5 600r ¥
@ SAP (our proposed algorithm) is in the g
S 0] L
order of tlogtlog(1/¢); g P
8 200} g
@ R-RMC on Hankel matrix is in the order B o o o0

2 .
of t°log tlog(1/e); Matrix dimension (n)
Figure 15: Comparison of computational time with
conventional low-rank matrix completion
approaches

o ADMM on Hankel matrix is at least in
the order of t3/5;
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Evaluation on Synchrophasor Data

Randomly located missing and bad data.

Observed voltage phasor magnitudes Observed angles of voltage phasors

3 ‘ [ g 20
@ | k=)
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3 Recovered voltage phasor magnitudes % 200 Recover ed voltage phasor angles
Qo
e >
S 5 100 /
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Figure 16: One case of 8% random bad data and 40% random missing data
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Evaluation on Synchrophasor Data

Consecutive bad data are corrected. Event disturbance is maintained.

Observed voltage phasor magnltud% Recover ed voltage phasor magnitudes

HI uf g | ,T' r“#h 11

1171

3 3
e e
g 105 1A 8 105
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F=U ) s i A L Il € 1
F e §
@ 0957 ’ o 0.95
g g
£ 097 £ 09
> >
0 5 10 15 0 5 10 15 20
Time (second) Time (second)

Figure 17: Consecutive bad data, 3% random bad data and 20% missing data
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Proof Sketch of SAP

The update rule of Y1) is

HYE) = QU (Y* + (T - p~'Pa) (YD + 8O — Y* — §*) +(S*) — §*) ).
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Proof Sketch of SAP

The update rule of Y(+1) is

HYED) = 9,1 (Y* + (Z - p*l'pﬂ)(y(ﬁ) + 8O _yx _ S*) + (S(é) — 5% )
E; in the order of log n/\/|Q| E; in the order of «

We have [[YFD — v < 3| YO — Y*| if |Q is sufficiently large and « is sufficiently small.

«: fraction of non-zero entries in S®) — §*: upper bounded by the fraction of corrupted columns or
entries as we prove that the support of S®) — §* is always a subset of S*.
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Proof Sketch of SAP

The update rule of Y(+1) is

HYED) = 9,1 (Y* + (Z - p*l'pﬂ)(y(ﬁ) + 8O _yx _ S*) + (S(é) — 5% )
E; in the order of log n/\/|Q| E; in the order of «

We have [[YFD — v < 3| YO — Y*| if |Q is sufficiently large and « is sufficiently small.
Let U be space of HYED) | we have

IHY D —HY oo = NHY D —HY Juil oo + (T~ Pu)HY "
i=1

<r-lEs+ Ellz - [ YO = Yoo + (T~ Pu)HY .
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Proof Sketch of SAP

The update rule of Y(+1) is

HYED) = 9,1 (Y* + (Z - p*lfpﬂ)(y(f) + 8O _yx _ S*) + (S(é) — 5% )
E; in the order of log n/\/|Q| E; in the order of «

We have [[YFD — v < 3| YO — Y*| if |Q is sufficiently large and « is sufficiently small.
Let U be space of HYED) | we have
IHYED = HY oo = 3 IHY D = HY Yoo + (= Pu)HY
i=1

<r |Et+ B2 YO = Yoo + (T — Pu)HY |-

By projecting into a rank-r Hankel matrix space, the order of first item is reduced from t to r, however,
at a cost of a projection error (second item).
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Proof Sketch of SAP
The update rule of Y(+1) is

HYED) = 9,1 (Y* + (Z - p*lfpg)(y(f) + 8O _yx _ S + (s(é) — 5% )
E; in the order of log n/\/|Q| E; in the order of «

We have [[YFD — v < 3| YO — Y*| if |Q is sufficiently large and « is sufficiently small.
Let U be space of HYED) | we have

IHY D —HY oo =Y IHYED = HY )ui]| oo + [T~ Pu)HY |
i=1
<r- B+ Ell2- [|[YY = Y¥loo + (T = Pu)HY oo
To guarantee the convergence, we need

|EL + B2 < 2 = Q> O(r?log?(n)) and a > ©(1/r),
and ||(Z — Pu)HY*||o is in the order of || Y ) — Y*||, (major technique challenges).
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