Neural Network Pruning

- Remove (unnecessary) parameters of the neural networks.
- Reduce compute cost, memory cost, energy consumption, and carbon footprint.

• • • • • • • •

Neural Network Pruning: Benefits of Pruning

Sparse neural networks:

- 90% of the parameters can be pruned.
- Reduce computational cost by $5 \times$.

Table 1: Network pruning makes neural networks sparse. Source from [Han et al.15]

Neural Network	# Parameters			MACs
	Before Pruning	After Pruning	Reduction	Reduction
Alexnet	61M	6.7M	9 X	3 X
VGG-16	138M	10.3M	12 X	5 X
GoogleNet	7M	2.0M	3.5 X	5 X
ResNet50	26M	7.47M	3.4 X	6.3 X
SqueezeNet	1M	0.38M	3.2 X	3.5 X

In addition, a good pruned neural network:

- Improved test accuracy
- Faster convergence rate

Table 2: Improved test accuracy of training pruned network. Source: Adapted from [Frankle et al.19], [Chen et al.20], [Chen et al.22].

Neural	_	Accuracy (%)		
Network	Dataset	Before Pruning	After Pruning	
LetNet-5	MINST	98.05	98.41	
Conv-6	Cifar-10	77.52	80.02	
ResNet-50	Cifar-10	94.31	94.82	
ResGCN-28	Cora	80.02	81.88	
BERT	MNLI	82.39	83.08	

Related Works: LTH and pruned network

Lottery Ticket Hypothesis (LTH) [Frankle et al.19]

- Existence of a good sub-network, named "winning tickets", such that it benefits the training with
 - □ A faster convergence rate.
 - □ A better generalization error.
- Magnitude-based pruning algorithm can find "winning tickets".

Related Works: LTH and pruned network

Lottery Ticket Hypothesis (LTH) [Frankle et al.19]

- Existence of a good sub-network, named "winning tickets", such that it benefits the training with
 - □ A faster convergence rate.
 - □ A better generalization error.
- Magnitude-based pruning algorithm can find "winning tickets".

Two limitations.

- Cannot explain the improved performance of the "winning tickets". (Benefits of training "winning tickets".)
- Cannot explain why magnitude-based pruning can find the "winning tickets". (Magnitude-based pruning in finding "winning tickets".)

イロト 不得下 イヨト イヨト

Finding the "Winning Ticket": Iterative Magnitude Pruning

- Train dense network with initial neuron weights until convergence with weights W_T.
- Pruning network by removing weights with smallest magnitudes in W_T
- Re-train on the pruned network using the same initialization and training set.

Finding the "Winning Ticket": Iterative Magnitude Pruning

- Train dense network with initial neuron weights until convergence with weights W_T.
- Pruning network by removing weights with smallest magnitudes in W_T
- Re-train on the pruned network using the same initialization and training set.
- Repeat the pruning process until observing the desired sparsity or a significant drop in performance.

Benefits of "winning tickets". (Training on "winning tickets")

2 Magnitude-based pruning in finding "winning tickets". (Training on dense networks.)

イロト 不得 トイヨト イヨト

Benefits of "winning tickets". (Training on "winning tickets")

Benefits of "winning tickets". (Training on "winning tickets")

1 Benefits of "winning tickets". (Training on "winning tickets")

1 Benefits of "winning tickets". (Training on "winning tickets")

Benefits of Pruning (Part 1)

1. (Convex region near ground truth) Compared with the dense neural network, the pruned network has a larger and steeper convex region.

- The radius of the convex region scales in the order of $1 \sqrt{\frac{r}{N}}$.
 - With pruned networks, we need fewer samples for initialization.
- The eigenvalues of the Hessian matrix scales in the order of $1 \sqrt{\frac{r}{N}}$.
 - With pruned networks, we have a faster convergence rate.

Benefits of Pruning (Part 1)

1. (Convex region near ground truth) Compared with the dense neural network, the pruned network has a larger and steeper convex region.

- The radius of the convex region scales in the order of $1-\sqrt{\frac{r}{N}}.$
 - Sample complexity scales in the order of r.
- The eigenvalues of the Hessian matrix scales in the order of $1-\sqrt{\frac{r}{N}}.$

- Convergence rate scales in the order of $1 - \sqrt{\frac{r}{N}}$.

< ロ > < 同 > < 回 > < 回 >

Benefits of Pruning (Part 2)

2. (Landscape near the ground truth) Compared with the dense neural network, the objective function of pruned network f is closer to the generalization error function $\mathbb{E}_{\mathcal{D}}f$.

- Distance between the $\mathbb{E}_{\mathcal{D}}f$ and f scales in the order of $\sqrt{\frac{r}{N}}$.
 - With pruned networks, we need fewer samples for converging.
- The distance of convergent point $W^{(T)}$ and ground truth W^* scales in the order of $\sqrt{\frac{r}{N}}$.

- With pruned networks, we have a better generalization error.

[Zhang et al. NeurIPS'21] Shuai Zhang (RPI)

Benefits of Pruning (Part 2)

2. (Landscape near the ground truth) Compared with the dense neural network, the objective function of pruned network f is closer to the generalization error function $\mathbb{E}_{\mathcal{D}}f$.

- Distance between the $\mathbb{E}_{\mathcal{D}}f$ and f scales in the order of $\sqrt{\frac{r}{N}}$.
 - Sample complexity scales in the order of r.
- The distance of convergent point $W^{(T)}$ and ground truth W^* scales in the order of $\sqrt{\frac{r}{N}}$.

- Generalization error scales in order of $\sqrt{\frac{r}{N}}$.

[Zhang et al. NeurIPS'21] Shuai Zhang (RPI)

Benefits of "Winning Tickets": Major Theoretical Findings

Takeaways: Compared with dense network, training on a "winning ticket":

- Fewer samples for initialization and convergence.
- A faster convergence rate.
- A reduced generalization error.

Benefits of "Winning Tickets": Major Theoretical Findings

Takeaways: Compared with dense network, training on a "winning ticket":

- Fewer samples for initialization and convergence.
- A faster convergence rate.
- A reduced generalization error.

Quantitative characterizations of the improved performance and the sparsity of "winning ticket":

- The radius of the convex region scales in the order of $1 c \cdot \sqrt{r}$ (c is a small constant).
- Distance between the gradient direction of objective function and generalization functions scales in the order of \sqrt{r} .
 - Sample complexity scales in the order of r.
- The eigenvalues of the Hessian matrix scales in the order of $1 c \cdot \sqrt{r}$.
 - Convergence rate scales in the order of $1 c \cdot \sqrt{r}$.
- The distance of convergent point W_T and ground truth W^* scales in the order of \sqrt{r} .
 - Generalization error scales in order of \sqrt{r} .

[Zhang et al. NeurIPS'21]

Shuai Zhang (RPI)

Magnitude-based Pruning Finds "Winning tickets"

Assumption: Data is a mixture of <u>class-relevant features</u> and <u>class-irrelevant features</u> contain labeling info contain background/noise info

Magnitude-based Pruning Finds "Winning tickets"

Assumption: Data is a mixture of *class-relevant features* and contain labeling info

class-irrelevant features contain background/noise info

Two types of neuron weights:

- "Good" neuron weights:
 - small angle \longrightarrow learns class-relevant features.
 - have large magnitudes.
- "Bad" neuron weights:
 - large angle \longrightarrow learns class-irrelevant features.
 - have small magnitudes.

(Informal ver.) Theorem 3.1

For a "good" neuron with weights \boldsymbol{w}_1 and "bad" neuron with weights \boldsymbol{w}_2 , we have $\|\boldsymbol{w}_1\| - \|\boldsymbol{w}_2\| \ge 1 - \Theta(1/\sqrt{N}).$

neuron weights Magnitude of Good neurons Rad neurons $\pi/2$ Angle between neuron weights and class-relevant features

Figure 4: Distribution of the neuron weights.

(人間) とくほう くほう

[Zhang et al. ICLR'23]

Shuai Zhang (RPI)

Reliable & Efficient Deep Learning

Magnitude-based Pruning + Rewinding Initialization

The initial weights determine whether a neuron is "good" or "bad".

A numerical justification on a shallow neural network.

Figure 5: Number of iterations against the pruning rate.

(人間) とくほう くほう

[Zhang et al. ICLR'23] _____Shuai Zhang (RPI)

Reliable & Efficient Deep Learning

Empirical Results: ResNet-50 on CIFAR-10

- Ten-class image classification: Labeled data from CIFAR-10, 50-layer ResNet.
- CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes.
- ResNet: network with Residual blocks via skip connections.

Figure 6: Illustration of the CIFAR-10 dataset (labeled subsets of Tiny Images)

Empirical Results: ResNet-50 on CIFAR-10

Magnitude-based network pruning finds a good pruned neural network.

- Magnitude-based pruned network (blue line) achieves an improved test accuracy over the dense network (baseline), while a random pruning network (purple line) suggests a reduced test accuracy.
- Up to 80% neuron weights can be pruned with a similar performance as training on the dense network.

Figure 7: The test accuracy against the pruning ratio.

Network Pruning for Efficient Deep Learning

Magnitude-based network pruning \Longrightarrow Improved computation efficiency.

– Sparsify neural network – Improved test accuracy – Faster convergence rate

Our contributions:

- Theoretical guarantees for using magnitude-based pruning in finding the "winning ticket".
- Theoretical explanations for a good pruned network in achieving improved test accuracy and accelerated convergence rate.

