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Self-training

Why self-training?

o Labeled data is hard to get
while unlabeled data is
cheap.

@ Unlabeled data can improve
the performance.
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Related Works: Benefits of unlabeled data and Limitations of Self-training

@ Unlabeled data benefit boundary identification.
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Related Works: Benefits of unlabeled data and Limitations of Self-training

@ Unlabeled data benefit boundary identification.
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@ Limitations of existing theoretical works: ®  Unlabeled data

Boundary

O Linear models [Chen et al.20a, Raghunathan
et al.20, Oymak and Gulcu.20].

[0 Unlabeled data in non-linear model can sometime
hurt the performance [Wei et al.20].

[0 Infinite number of unlabeled data.
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Boundary

O Linear models [Chen et al.20a, Raghunathan
et al.20, Oymak and Gulcu.20].

[0 Unlabeled data in non-linear model can sometime
hurt the performance [Wei et al.20].

[0 Infinite number of unlabeled data.

Classifier without
unlabeled data

Question?

1. How to set hyperparameters that ensure enhanced accuracy?
2. How much unlabeled data is required to obtain a specific improvement in test accuracy?
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lterative Self-training Algorithm
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Few labeled data (N) Adequate

@ unlabeled data (M)
| (S1) Initialize teacher via labeled data; ‘
4
| (S2) Generate pseudo-labels via teacher; ‘
4
(S3) Train student with mixed labeled and
unlabeled data;

O

(S4) Replace teacher with the learned
student in (S3), and go back to (S2);

Input: Labeled data D = {x,, y,}_,, unlabeled data
D = {%,}M_,, and loss parameter \.

@ Obtain teacher W(® by minimizing fp(W) with
respect to labeled data.

For {=0,1,2,---,L do

@ Generate pseudo-labels )7,(,,6) for the unlabeled data
in D using teacher W e, )7,(,,6) = g(W(Z);)"(m).

© Train a student W by minimizing:

FW) =X fp+(1— ) £,

© Set the student W as the new teacher W(¢+1)
and ¢ +— ¢+ 1.
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Intuition From the Landscape Analysis

Adding unlabeled data can shift the convergent point towards the desired model W™,

Local minima
without unlabeled data

Local minima
/% with unlabeled data
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[Zhang et al. ICLR'22]
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Main Theoretical Findings

@ W™: the desired model.

@ N*: the required labeled data for finding W™,

Takeaway: iteration {W()}f_; converge linearly to (Desired number of labeled data we want)

ground truth W* up to bounded error term depend-
ing on A and unlabeled data amount M.

[Zhang et al. ICLR'22]
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Main Theoretical Findings

Takeaway: iteration {W(9)}5_| converge linearly to
ground truth W* up to bounded error term depend-
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Main Theoretical Findings

Takeaway: iteration {W(9)}5_| converge linearly to
ground truth W* up to bounded error term depend-
ing on A and unlabeled data amount M.
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@ W™: the desired model.

@ N*: the required labeled data for finding W™,
(Desired number of labeled data we want)

@ N: the number of labeled data we have, N < N*.
(Actual number of labeled data we have)

M: the number of unlabeled data.

W©: the initial weights learned from N labeled
data.

Wi wh = 1 - WO L awr.
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@ WWM: the convergent point.
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Main Theoretical Findings

@ W™: the desired model.
@ N*: the required labeled data for finding W™,
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Insights of the Theoretical Results

® Unlabeled data ——p Performance ’
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Empirical Results: ResNet-28 on CIFAR-10

@ Ten-class image classification: Labeled data from CIFAR-10, unlabeled data from Tiny Images,
28-layer ResNet.

@ CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes.

@ ResNet: network with Residual blocks via skip connections.
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(labeled subsets of Tiny Images) Figure 9: Illustration of Residual modular

airplane %.E’,\ V..;t- ix

Figure 8: Illustration of the CIFAR-10 dataset
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Empirical Results: ResNet-28 on CIFAR-10

@ From the line with rectangular mark (N = 50K), the test accuracy is improved by 7% by using
unlabeled data (82.79% to 89.61% as the unlabeled data from 0 to 500K).

@ The improved test accuracy and convergence rate are in the order of 1/v/ M, matching our

theoretical findings.

N=15K
N=30K
N=50K

N=15K N=30K
gN:“iOK __ue_jFitted curve of ©(1/vVM) 0.962
by Our Theorem % 0.96
=% @
X © 0.958
= B
? § 0.95
385 € 0.954
8 Q
g € 0.952
"o 0 100K 200K 300K 400K 500K > 0 T 8
1/vM
Number of unlabeled data /

Figure 9: The test accuracy against the
of unlabeled data M
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number Figure 10: The convergence rate against the

number of unlabeled data M
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Self-training for Sample Efficient Deep Learning

Self-training algorithms augment limited labeled data with a large size of unlabeled data.
@ Unlabeled data is widely available while labeled data is expensive.

@ Unlabeled data can improve the performance

Our contributions:

=90
S
@ Theoretical guidance for the hyperparameter 88
lection with ran improv rformance. 5
selectio th guaranteed improved performance %86 ----- Fivved curve of O/ VAT
e Quantitative characterization of unlabeled data 7 84 ]I[’ty o Theffr:m. .
. . . —E— erative sell-training
amount improves performance with theoretical o
guarantees. 0 100K 200K 300K 400K 500K

Number of unlabeled data (M)

[Zhang et al. ICLR'22]
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