Self-training

э

イロト 不得 トイヨト イヨト

Self-training

э

イロト 不得 トイヨト イヨト

Self-training

Why self-training?

- Labeled data is hard to get while unlabeled data is cheap.
- Unlabeled data can improve the performance.

• Unlabeled data benefit boundary identification.

• Unlabeled data benefit boundary identification.

- Unlabeled data benefit boundary identification.
- Limitations of existing theoretical works:
 - □ *Linear models* [Chen et al.20a, Raghunathan et al.20, Oymak and Gulcu.20].
 - □ Unlabeled data in non-linear model can sometime hurt the performance [Wei et al.20].
 - □ Infinite number of unlabeled data.

- Unlabeled data benefit boundary identification.
- Limitations of existing theoretical works:
 - □ *Linear models* [Chen et al.20a, Raghunathan et al.20, Oymak and Gulcu.20].
 - □ Unlabeled data in non-linear model can sometime hurt the performance [Wei et al.20].
 - □ Infinite number of unlabeled data.

Question?

- 1. How to set hyperparameters that ensure enhanced accuracy?
- 2. How much unlabeled data is required to obtain a specific improvement in test accuracy?

Iterative Self-training Algorithm

Input: Labeled data $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$, unlabeled data $\widetilde{\mathcal{D}} = \{\widetilde{\mathbf{x}}_n\}_{m=1}^M$, and loss parameter λ .

• Obtain teacher $\boldsymbol{W}^{(0)}$ by minimizing $f_{\mathcal{D}}(W)$ with respect to labeled data.

For $\ell=0,1,2,\cdots,L$ do

⁽²⁾ Generate pseudo-labels $\tilde{y}_m^{(\ell)}$ for the unlabeled data in $\tilde{\mathcal{D}}$ using teacher $W^{(\ell)}$, i.e., $\tilde{y}_m^{(\ell)} = g(W^{(\ell)}; \tilde{x}_m)$.

③ Train a student
$$\widehat{\boldsymbol{W}}$$
 by minimizing:

$$f(\boldsymbol{W}) = \boldsymbol{\lambda} \cdot f_{\mathcal{D}} + (1 - \boldsymbol{\lambda}) \cdot f_{\widetilde{\mathcal{D}}}^{(\ell)}.$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Set the student $\widehat{\boldsymbol{W}}$ as the new teacher $\boldsymbol{W}^{(\ell+1)}$ and $\ell \longleftarrow \ell + 1$.

Intuition From the Landscape Analysis

Adding unlabeled data can shift the convergent point towards the desired model W^{\star} .

[Zhang et al. ICLR'22] Shuai Zhang (RPI)

イロト イポト イヨト イヨ

Takeaway: iteration $\{\boldsymbol{W}^{(\ell)}\}_{\ell=1}^{L}$ converge linearly to ground truth \boldsymbol{W}^* up to bounded error term depending on λ and unlabeled data amount M.

- W*: the desired model.
- N*: the required labeled data for finding W*. (Desired number of labeled data we want)

 W^*

Zhang	et	al.	ICI	LR	22
Sh	uai	7hai	ng (R	PI)	

Takeaway: iteration $\{\boldsymbol{W}^{(\ell)}\}_{\ell=1}^{L}$ converge linearly to ground truth \boldsymbol{W}^* up to bounded error term depending on λ and unlabeled data amount M.

- N*: the required labeled data for finding W*. (Desired number of labeled data we want)
- N: the number of labeled data we have, N < N*. (Actual number of labeled data we have)
- M: the number of unlabeled data.
- $W^{(0)}$: the initial weights learned from N labeled data.

$$W^{(0)}$$

 W^*

Takeaway: iteration $\{\boldsymbol{W}^{(\ell)}\}_{\ell=1}^{L}$ converge linearly to ground truth \boldsymbol{W}^* up to bounded error term depending on λ and unlabeled data amount M.

$$\boldsymbol{W}^{(0)}$$

$$\boldsymbol{\mathcal{E}}_{0} = (1-\lambda) \cdot \| \boldsymbol{W}^{*} - \boldsymbol{W}^{(0)} \|$$

• *W*^{*}: the desired model.

- N*: the required labeled data for finding W*. (Desired number of labeled data we want)
- N: the number of labeled data we have, N < N*. (Actual number of labeled data we have)
- M: the number of unlabeled data.
- $W^{(0)}$: the initial weights learned from N labeled data.

•
$$\boldsymbol{W}^{[\lambda]}$$
: $\boldsymbol{W}^{[\lambda]} = (1 - \lambda) \boldsymbol{W}^{(0)} + \lambda \boldsymbol{W}^*$.

 $\lambda \in \left[rac{1}{2}, \sqrt{rac{N}{N^*}}
ight].$

[Zhang et al. ICLR'22] Shuai Zhang (RPI)

Takeaway: iteration $\{\boldsymbol{W}^{(\ell)}\}_{\ell=1}^{L}$ converge linearly to ground truth \boldsymbol{W}^* up to bounded error term depending on λ and unlabeled data amount M.

- W*: the desired model.
- N*: the *required* labeled data for finding W*. (Desired number of labeled data we want)
- N: the number of labeled data we have, N < N*. (Actual number of labeled data we have)
- M: the number of unlabeled data.
- $W^{(0)}$: the initial weights learned from N labeled data.
- $\boldsymbol{W}^{[\lambda]}$: $\boldsymbol{W}^{[\lambda]} = (1 \lambda) \boldsymbol{W}^{(0)} + \lambda \boldsymbol{W}^*$.

 $\lambda \in \left[rac{1}{2}, \sqrt{rac{N}{N^*}}
ight].$

[Zhang et al. ICLR'22] Shuai Zhang (RPI)

Takeaway: iteration $\{\boldsymbol{W}^{(\ell)}\}_{\ell=1}^{L}$ converge linearly to ground truth \boldsymbol{W}^* up to bounded error term depending on λ and unlabeled data amount M.

- W*: the desired model.
- N*: the *required* labeled data for finding W*. (Desired number of labeled data we want)
- N: the number of labeled data we have, N < N*. (Actual number of labeled data we have)
- M: the number of unlabeled data.
- $W^{(0)}$: the initial weights learned from N labeled data.
- $\boldsymbol{W}^{[\lambda]}: \boldsymbol{W}^{[\lambda]} = (1-\lambda)\boldsymbol{W}^{(0)} + \lambda\boldsymbol{W}^*.$

 $\lambda \in \left[\frac{1}{2}, \sqrt{\frac{N}{N^*}}\right].$

[Zhang et al. ICLR'22] Shuai Zhang (RPI)

Takeaway: iteration $\{\boldsymbol{W}^{(\ell)}\}_{\ell=1}^{L}$ converge linearly to ground truth \boldsymbol{W}^* up to bounded error term depending on λ and unlabeled data amount M.

- W*: the desired model.
- N*: the *required* labeled data for finding W*. (Desired number of labeled data we want)
- N: the number of labeled data we have, N < N*. (Actual number of labeled data we have)
- M: the number of unlabeled data.
- $W^{(0)}$: the initial weights learned from N labeled data.
- $\boldsymbol{W}^{[\lambda]}$: $\boldsymbol{W}^{[\lambda]} = (1 \lambda) \boldsymbol{W}^{(0)} + \lambda \boldsymbol{W}^*$.

 $\lambda \in \left[rac{1}{2}, \sqrt{rac{N}{N^*}}
ight].$

• $W^{(L)}$: the convergent point.

[Zhang et al. ICLR'22] Shuai Zhang (RPI)

Takeaway: iteration $\{\boldsymbol{W}^{(\ell)}\}_{\ell=1}^{L}$ converge linearly to ground truth \boldsymbol{W}^* up to bounded error term depending on λ and unlabeled data amount \boldsymbol{M} .

- W*: the desired model.
- N*: the required labeled data for finding W*. (Desired number of labeled data we want)
- N: the number of labeled data we have, N < N*. (Actual number of labeled data we have)
- M: the number of unlabeled data.
- $W^{(0)}$: the initial weights learned from N labeled data.
- $\boldsymbol{W}^{[\lambda]}$: $\boldsymbol{W}^{[\lambda]} = (1 \lambda) \boldsymbol{W}^{(0)} + \lambda \boldsymbol{W}^*$.

$$\lambda \in \Big[rac{1}{2}, \sqrt{rac{N}{N^*}}\Big].$$

• $W^{(L)}$: the convergent point.

Generalization error:

$$\|\boldsymbol{W}^{(L)} - \boldsymbol{W}^*\|_2 \leq \varepsilon_0 + \varepsilon_1.$$

イロト 不得下 イヨト イヨト

[Zhang et al. ICLR'22] Shuai Zhang (RPI)

Takeaway: iteration $\{\boldsymbol{W}^{(\ell)}\}_{\ell=1}^{L}$ converge linearly to ground truth \boldsymbol{W}^* up to bounded error term depending on λ and unlabeled data amount \boldsymbol{M} .

[Zhang et al. ICLR'22]

Shuai Zhang (RPI)

• W*: the desired model.

- N*: the *required* labeled data for finding W*. (Desired number of labeled data we want)
- N: the number of labeled data we have, N < N*. (Actual number of labeled data we have)
- M: the number of unlabeled data.
- $W^{(0)}$: the initial weights learned from N labeled data.
- $\boldsymbol{W}^{[\lambda]}$: $\boldsymbol{W}^{[\lambda]} = (1 \lambda) \boldsymbol{W}^{(0)} + \lambda \boldsymbol{W}^*$.

$$\lambda \in \left[rac{1}{2}, \sqrt{rac{N}{N^*}}
ight].$$

• *W*^(L): the convergent point. Convergence rate:

$$rac{\Delta_1}{\Delta_0} \leq (1+rac{1}{\sqrt{M}})\cdot(1-\lambda).$$

Insights of the Theoretical Results

[Zhang et al. ICLR'22] Shuai Zhang (RPI)

31 / 78

Insights of the Theoretical Results

Insights of the Theoretical Results

Shuai Zhang (RPI)

31 / 78

Empirical Results: ResNet-28 on CIFAR-10

- Ten-class image classification: Labeled data from CIFAR-10, unlabeled data from Tiny Images, 28-layer ResNet.
- CIFAR-10 dataset contains 60,000 32×32 color images in 10 different classes.
- ResNet: network with Residual blocks via skip connections.

Figure 8: Illustration of the CIFAR-10 dataset (labeled subsets of Tiny Images)

Figure 9: Illustration of Residual modular

Empirical Results: ResNet-28 on CIFAR-10

- From the line with rectangular mark (N = 50K), the test accuracy is improved by 7% by using unlabeled data (82.79% to 89.61% as the unlabeled data from 0 to 500K).
- The improved test accuracy and convergence rate are in the order of $1/\sqrt{M}$, matching our theoretical findings.

Shuai Zhang (RPI)

N=15K J=30K

N=50K

 $\times 10^{-3}$

10

8

Self-training for Sample Efficient Deep Learning

Self-training algorithms augment limited labeled data with a large size of unlabeled data.

- Unlabeled data is widely available while labeled data is expensive.
- Unlabeled data can improve the performance

Our contributions:

- Theoretical guidance for the hyperparameter selection with guaranteed improved performance.
- Quantitative characterization of unlabeled data amount improves performance with theoretical guarantees.

