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Related Works: Benefits of unlabeled data and Limitations of Self-training

Unlabeled data benefit boundary identification.

Limitations of existing theoretical works:

□ Linear models [Chen et al.20a,Raghunathan
et al.20,Oymak and Gulcu.20].

□ Unlabeled data in non-linear model can sometime
hurt the performance [Wei et al.20].

□ Infinite number of unlabeled data.

Labeled data

Classifier without 
unlabeled data

Boundary

Question?

1. How to set hyperparameters that ensure enhanced accuracy?
2. How much unlabeled data is required to obtain a specific improvement in test accuracy?
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Iterative Self-training Algorithm

Few labeled data (N) Adequate 
unlabeled data (M)

(S1) Initialize teacher via labeled data;

(S2) Generate pseudo-labels via teacher;

(S3) Train student with mixed labeled and 
unlabeled data;

(S4) Replace teacher with the learned 
student in (S3), and go back to (S2);

Input: Labeled data D = {xn, yn}Nn=1, unlabeled data

D̃ = {x̃m}Mm=1, and loss parameter λ.

1 Obtain teacher W (0) by minimizing fD(W ) with
respect to labeled data.

For ℓ = 0, 1, 2, · · · , L do

2 Generate pseudo-labels ỹ
(ℓ)
m for the unlabeled data

in D̃ using teacher W (ℓ), i.e., ỹ
(ℓ)
m = g(W (ℓ); x̃m).

3 Train a student Ŵ by minimizing:

f (W ) = λ · fD + (1− λ) · f (ℓ)
D̃
.

4 Set the student Ŵ as the new teacher W (ℓ+1)

and ℓ←− ℓ+ 1.
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Intuition From the Landscape Analysis

Adding unlabeled data can shift the convergent point towards the desired model W ⋆.

𝑾𝑾
𝑾𝑾∗

Generalization
function

Objective function
with unlabeled data

Local minima
with unlabeled data

𝑾𝑾(0)

Objective function 
without unlabeled data

Local minima
without unlabeled data

[Zhang et al. ICLR’22]
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Main Theoretical Findings

Takeaway : iteration {W (ℓ)}Lℓ=1 converge linearly to

ground truth W ∗ up to bounded error term depend-

ing on λ and unlabeled data amount M.

𝑾𝑾∗

W ∗: the desired model.

N∗: the required labeled data for finding W ∗.
(Desired number of labeled data we want)

N: the number of labeled data we have, N < N∗.
(Actual number of labeled data we have)

M: the number of unlabeled data.

W (0): the initial weights learned from N labeled
data.

W [λ]: W [λ] = (1− λ)W (0) + λW ∗.

λ ∈
[
1
2
,
√

N
N∗

]
.

W (L): the convergent point.

Generalization error:

∥W (L) − W ∗∥2 ≤ ε0 + ε1.

Convergence rate:

∆1

∆0
≤ (1 +

1√
M

) · (1− λ).
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Insights of the Theoretical Results
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Empirical Results: ResNet-28 on CIFAR-10

Ten-class image classification: Labeled data from CIFAR-10, unlabeled data from Tiny Images,
28-layer ResNet.

CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes.

ResNet: network with Residual blocks via skip connections.

Figure 8: Illustration of the CIFAR-10 dataset
(labeled subsets of Tiny Images)

Hidden layer

𝒙𝒙

𝑔𝑔(�)

𝑥𝑥 + 𝑔𝑔(𝒙𝒙)
Identity

Figure 9: Illustration of Residual modular

From the line with rectangular mark (N = 50K ), the test accuracy is improved by 7% by using
unlabeled data (82.79% to 89.61% as the unlabeled data from 0 to 500K ).

The improved test accuracy and convergence rate are in the order of 1/
√
M, matching our

theoretical findings.
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Figure 11: The test accuracy against the number
of unlabeled data M
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Figure 12: The convergence rate against the
number of unlabeled data M
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Self-training for Sample Efficient Deep Learning

Self-training algorithms augment limited labeled data with a large size of unlabeled data.

Unlabeled data is widely available while labeled data is expensive.

Unlabeled data can improve the performance

Our contributions:

Theoretical guidance for the hyperparameter
selection with guaranteed improved performance.

Quantitative characterization of unlabeled data
amount improves performance with theoretical
guarantees. 0 100K 200K 300K 400K 500K
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